Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSurvival of the Most Influential Prompts: Efficient Black-Box Prompt Search via Clustering and Pruning
Prompt-based learning has been an effective paradigm for large pretrained language models (LLM), enabling few-shot or even zero-shot learning. Black-box prompt search has received growing interest recently for its distinctive properties of gradient-free optimization, proven particularly useful and powerful for model-as-a-service usage. However, the discrete nature and the complexity of combinatorial optimization hinder the efficiency of modern black-box approaches. Despite extensive research on search algorithms, the crucial aspect of search space design and optimization has been largely overlooked. In this paper, we first conduct a sensitivity analysis by prompting LLM, revealing that only a small number of tokens exert a disproportionate amount of influence on LLM predictions. Leveraging this insight, we propose the Clustering and Pruning for Efficient Black-box Prompt Search (ClaPS), a simple black-box search method that first clusters and prunes the search space to focus exclusively on influential prompt tokens. By employing even simple search methods within the pruned search space, ClaPS achieves state-of-the-art performance across various tasks and LLMs, surpassing the performance of complex approaches while significantly reducing search costs. Our findings underscore the critical role of search space design and optimization in enhancing both the usefulness and the efficiency of black-box prompt-based learning.
GrAInS: Gradient-based Attribution for Inference-Time Steering of LLMs and VLMs
Inference-time steering methods offer a lightweight alternative to fine-tuning large language models (LLMs) and vision-language models (VLMs) by modifying internal activations at test time without updating model weights. However, most existing approaches rely on fixed, global intervention vectors, overlook the causal influence of individual input tokens, and fail to leverage informative gradients from the model's logits, particularly in multimodal settings where visual and textual inputs contribute unevenly. To address these limitations, we introduce GrAInS, an inference-time steering approach that operates across both language-only and vision-language models and tasks. GrAInS uses contrastive, gradient-based attribution via Integrated Gradients to identify the top-k most influential tokens, both positively and negatively attributed based on their contribution to preferred versus dispreferred outputs. These tokens are then used to construct directional steering vectors that capture semantic shifts from undesirable to desirable behavior. During inference, GrAInS adjusts hidden activations at transformer layers guided by token-level attribution signals, and normalizes activations to preserve representational scale. This enables fine-grained, interpretable, and modular control over model behavior, without retraining or auxiliary supervision. Empirically, GrAInS consistently outperforms both fine-tuning and existing steering baselines: it achieves a 13.22% accuracy gain on TruthfulQA using Llama-3.1-8B, reduces hallucination rates on MMHal-Bench from 0.624 to 0.514 with LLaVA-1.6-7B, and improves alignment win rates on SPA-VL by 8.11%, all while preserving the model's fluency and general capabilities.
Latent Fusion Jailbreak: Blending Harmful and Harmless Representations to Elicit Unsafe LLM Outputs
Large language models (LLMs) demonstrate impressive capabilities in various language tasks but are susceptible to jailbreak attacks that circumvent their safety alignments. This paper introduces Latent Fusion Jailbreak (LFJ), a representation-based attack that interpolates hidden states from harmful and benign query pairs to elicit prohibited responses. LFJ begins by selecting query pairs with high thematic and syntactic similarity, then performs gradient-guided interpolation at influential layers and tokens, followed by optimization to balance attack success, output fluency, and computational efficiency. Evaluations on models such as Vicuna and LLaMA-2 across benchmarks like AdvBench and MaliciousInstruct yield an average attack success rate (ASR) of 94.01%, outperforming existing methods. To mitigate LFJ, we propose an adversarial training defense that fine-tunes models on interpolated examples, reducing ASR by over 80% without degrading performance on benign inputs. Ablation studies validate the importance of query pair selection, hidden state interpolation components, and optimization strategies in LFJ's effectiveness.
How Should We Extract Discrete Audio Tokens from Self-Supervised Models?
Discrete audio tokens have recently gained attention for their potential to bridge the gap between audio and language processing. Ideal audio tokens must preserve content, paralinguistic elements, speaker identity, and many other audio details. Current audio tokenization methods fall into two categories: Semantic tokens, acquired through quantization of Self-Supervised Learning (SSL) models, and Neural compression-based tokens (codecs). Although previous studies have benchmarked codec models to identify optimal configurations, the ideal setup for quantizing pretrained SSL models remains unclear. This paper explores the optimal configuration of semantic tokens across discriminative and generative tasks. We propose a scalable solution to train a universal vocoder across multiple SSL layers. Furthermore, an attention mechanism is employed to identify task-specific influential layers, enhancing the adaptability and performance of semantic tokens in diverse audio applications.
Language Model Uncertainty Quantification with Attention Chain
Accurately quantifying a large language model's (LLM) predictive uncertainty is crucial for judging the reliability of its answers. While most existing research focuses on short, directly answerable questions with closed-form outputs (e.g., multiple-choice), involving intermediate reasoning steps in LLM responses is increasingly important. This added complexity complicates uncertainty quantification (UQ) because the probabilities assigned to answer tokens are conditioned on a vast space of preceding reasoning tokens. Direct marginalization is infeasible, and the dependency inflates probability estimates, causing overconfidence in UQ. To address this, we propose UQAC, an efficient method that narrows the reasoning space to a tractable size for marginalization. UQAC iteratively constructs an "attention chain" of tokens deemed "semantically crucial" to the final answer via a backtracking procedure. Starting from the answer tokens, it uses attention weights to identify the most influential predecessors, then iterates this process until reaching the input tokens. Similarity filtering and probability thresholding further refine the resulting chain, allowing us to approximate the marginal probabilities of the answer tokens, which serve as the LLM's confidence. We validate UQAC on multiple reasoning benchmarks with advanced open-source LLMs, demonstrating that it consistently delivers reliable UQ estimates with high computational efficiency.
Procedural Knowledge in Pretraining Drives Reasoning in Large Language Models
The capabilities and limitations of Large Language Models have been sketched out in great detail in recent years, providing an intriguing yet conflicting picture. On the one hand, LLMs demonstrate a general ability to solve problems. On the other hand, they show surprising reasoning gaps when compared to humans, casting doubt on the robustness of their generalisation strategies. The sheer volume of data used in the design of LLMs has precluded us from applying the method traditionally used to measure generalisation: train-test set separation. To overcome this, we study what kind of generalisation strategies LLMs employ when performing reasoning tasks by investigating the pretraining data they rely on. For two models of different sizes (7B and 35B) and 2.5B of their pretraining tokens, we identify what documents influence the model outputs for three simple mathematical reasoning tasks and contrast this to the data that are influential for answering factual questions. We find that, while the models rely on mostly distinct sets of data for each factual question, a document often has a similar influence across different reasoning questions within the same task, indicating the presence of procedural knowledge. We further find that the answers to factual questions often show up in the most influential data. However, for reasoning questions the answers usually do not show up as highly influential, nor do the answers to the intermediate reasoning steps. When we characterise the top ranked documents for the reasoning questions qualitatively, we confirm that the influential documents often contain procedural knowledge, like demonstrating how to obtain a solution using formulae or code. Our findings indicate that the approach to reasoning the models use is unlike retrieval, and more like a generalisable strategy that synthesises procedural knowledge from documents doing a similar form of reasoning.
Influence Flowers of Academic Entities
We present the Influence Flower, a new visual metaphor for the influence profile of academic entities, including people, projects, institutions, conferences, and journals. While many tools quantify influence, we aim to expose the flow of influence between entities. The Influence Flower is an ego-centric graph, with a query entity placed in the centre. The petals are styled to reflect the strength of influence to and from other entities of the same or different type. For example, one can break down the incoming and outgoing influences of a research lab by research topics. The Influence Flower uses a recent snapshot of Microsoft Academic Graph, consisting of 212million authors, their 176 million publications, and 1.2 billion citations. An interactive web app, Influence Map, is constructed around this central metaphor for searching and curating visualisations. We also propose a visual comparison method that highlights change in influence patterns over time. We demonstrate through several case studies that the Influence Flower supports data-driven inquiries about the following: researchers' careers over time; paper(s) and projects, including those with delayed recognition; the interdisciplinary profile of a research institution; and the shifting topical trends in conferences. We also use this tool on influence data beyond academic citations, by contrasting the academic and Twitter activities of a researcher.
Position: AI/ML Influencers Have a Place in the Academic Process
As the number of accepted papers at AI and ML conferences reaches into the thousands, it has become unclear how researchers access and read research publications. In this paper, we investigate the role of social media influencers in enhancing the visibility of machine learning research, particularly the citation counts of papers they share. We have compiled a comprehensive dataset of over 8,000 papers, spanning tweets from December 2018 to October 2023, alongside controls precisely matched by 9 key covariates. Our statistical and causal inference analysis reveals a significant increase in citations for papers endorsed by these influencers, with median citation counts 2-3 times higher than those of the control group. Additionally, the study delves into the geographic, gender, and institutional diversity of highlighted authors. Given these findings, we advocate for a responsible approach to curation, encouraging influencers to uphold the journalistic standard that includes showcasing diverse research topics, authors, and institutions.
Evaluating Impact of Social Media Posts by Executives on Stock Prices
Predicting stock market movements has always been of great interest to investors and an active area of research. Research has proven that popularity of products is highly influenced by what people talk about. Social media like Twitter, Reddit have become hotspots of such influences. This paper investigates the impact of social media posts on close price prediction of stocks using Twitter and Reddit posts. Our objective is to integrate sentiment of social media data with historical stock data and study its effect on closing prices using time series models. We carried out rigorous experiments and deep analysis using multiple deep learning based models on different datasets to study the influence of posts by executives and general people on the close price. Experimental results on multiple stocks (Apple and Tesla) and decentralised currencies (Bitcoin and Ethereum) consistently show improvements in prediction on including social media data and greater improvements on including executive posts.
IDEAL: Influence-Driven Selective Annotations Empower In-Context Learners in Large Language Models
In-context learning is a promising paradigm that utilizes in-context examples as prompts for the predictions of large language models. These prompts are crucial for achieving strong performance. However, since the prompts need to be sampled from a large volume of annotated examples, finding the right prompt may result in high annotation costs. To address this challenge, this paper introduces an influence-driven selective annotation method that aims to minimize annotation costs while improving the quality of in-context examples. The essence of our method is to select a pivotal subset from a large-scale unlabeled data pool to annotate for the subsequent sampling of prompts. Specifically, a directed graph is first constructed to represent unlabeled data. Afterward, the influence of candidate unlabeled subsets is quantified with a diffusion process. A simple yet effective greedy algorithm for unlabeled data selection is lastly introduced. It iteratively selects the data if it provides a maximum marginal gain with respect to quantified influence. Compared with previous efforts on selective annotations, our influence-driven method works in an end-to-end manner, avoids an intractable explicit balance between data diversity and representativeness, and enjoys theoretical support. Experiments confirm the superiority of the proposed method on various benchmarks, achieving better performance under lower time consumption during subset selection. The project page is available at https://skzhang1.github.io/IDEAL/.
Token Cleaning: Fine-Grained Data Selection for LLM Supervised Fine-Tuning
Recent studies show that in supervised fine-tuning (SFT) of large language models (LLMs), data quality matters more than quantity. While most data cleaning methods concentrate on filtering entire samples, the quality of individual tokens within a sample can vary significantly. After pre-training, even in high-quality samples, patterns or phrases that are not task-related can be redundant, uninformative, or even harmful. Continuing to fine-tune on these patterns may offer limited benefit and even degrade downstream task performance. In this paper, we investigate token quality from a noisy-label perspective and propose a generic token cleaning pipeline for SFT tasks. Our method filters out uninformative tokens while preserving those carrying key task-specific information. Specifically, we first evaluate token quality by examining the influence of model updates on each token, then apply a threshold-based separation. The token influence can be measured in a single pass with a fixed reference model or iteratively with self-evolving reference models. The benefits and limitations of both methods are analyzed theoretically by error upper bounds. Extensive experiments show that our framework consistently improves downstream performance. Code is available at https://github.com/UCSC-REAL/TokenCleaning.
Uncovering Agendas: A Novel French & English Dataset for Agenda Detection on Social Media
The behavior and decision making of groups or communities can be dramatically influenced by individuals pushing particular agendas, e.g., to promote or disparage a person or an activity, to call for action, etc.. In the examination of online influence campaigns, particularly those related to important political and social events, scholars often concentrate on identifying the sources responsible for setting and controlling the agenda (e.g., public media). In this article we present a methodology for detecting specific instances of agenda control through social media where annotated data is limited or non-existent. By using a modest corpus of Twitter messages centered on the 2022 French Presidential Elections, we carry out a comprehensive evaluation of various approaches and techniques that can be applied to this problem. Our findings demonstrate that by treating the task as a textual entailment problem, it is possible to overcome the requirement for a large annotated training dataset.
Harnessing Diversity for Important Data Selection in Pretraining Large Language Models
Data selection is of great significance in pre-training large language models, given the variation in quality within the large-scale available training corpora. To achieve this, researchers are currently investigating the use of data influence to measure the importance of data instances, i.e., a high influence score indicates that incorporating this instance to the training set is likely to enhance the model performance. Consequently, they select the top-k instances with the highest scores. However, this approach has several limitations. (1) Computing the influence of all available data is time-consuming. (2) The selected data instances are not diverse enough, which may hinder the pre-trained model's ability to generalize effectively to various downstream tasks. In this paper, we introduce Quad, a data selection approach that considers both quality and diversity by using data influence to achieve state-of-the-art pre-training results. In particular, noting that attention layers capture extensive semantic details, we have adapted the accelerated iHVP computation methods for attention layers, enhancing our ability to evaluate the influence of data, i.e., its quality. For the diversity, Quad clusters the dataset into similar data instances within each cluster and diverse instances across different clusters. For each cluster, if we opt to select data from it, we take some samples to evaluate the influence to prevent processing all instances. To determine which clusters to select, we utilize the classic Multi-Armed Bandit method, treating each cluster as an arm. This approach favors clusters with highly influential instances (ensuring high quality) or clusters that have been selected less frequently (ensuring diversity), thereby well balancing between quality and diversity.
Multi-Draft Speculative Sampling: Canonical Architectures and Theoretical Limits
We consider multi-draft speculative sampling, where the proposal sequences are sampled independently from different draft models. At each step, a token-level draft selection scheme takes a list of valid tokens as input and produces an output token whose distribution matches that of the target model. Previous works have demonstrated that the optimal scheme (which maximizes the probability of accepting one of the input tokens) can be cast as a solution to a linear program. In this work we show that the optimal scheme can be decomposed into a two-step solution: in the first step an importance sampling (IS) type scheme is used to select one intermediate token; in the second step (single-draft) speculative sampling is applied to generate the output token. For the case of two identical draft models we further 1) establish a necessary and sufficient condition on the distributions of the target and draft models for the acceptance probability to equal one and 2) provide an explicit expression for the optimal acceptance probability. Our theoretical analysis also motives a new class of token-level selection scheme based on weighted importance sampling. Our experimental results demonstrate consistent improvements in the achievable block efficiency and token rates over baseline schemes in a number of scenarios.
FASA: Frequency-aware Sparse Attention
The deployment of Large Language Models (LLMs) faces a critical bottleneck when handling lengthy inputs: the prohibitive memory footprint of the Key Value (KV) cache. To address this bottleneck, the token pruning paradigm leverages attention sparsity to selectively retain a small, critical subset of tokens. However, existing approaches fall short, with static methods risking irreversible information loss and dynamic strategies employing heuristics that insufficiently capture the query-dependent nature of token importance. We propose FASA, a novel framework that achieves query-aware token eviction by dynamically predicting token importance. FASA stems from a novel insight into RoPE: the discovery of functional sparsity at the frequency-chunk (FC) level. Our key finding is that a small, identifiable subset of "dominant" FCs consistently exhibits high contextual agreement with the full attention head. This provides a robust and computationally free proxy for identifying salient tokens. %making them a powerful and efficient proxy for token importance. Building on this insight, FASA first identifies a critical set of tokens using dominant FCs, and then performs focused attention computation solely on this pruned subset. % Since accessing only a small fraction of the KV cache, FASA drastically lowers memory bandwidth requirements and computational cost. Across a spectrum of long-context tasks, from sequence modeling to complex CoT reasoning, FASA consistently outperforms all token-eviction baselines and achieves near-oracle accuracy, demonstrating remarkable robustness even under constraint budgets. Notably, on LongBench-V1, FASA reaches nearly 100\% of full-KV performance when only keeping 256 tokens, and achieves 2.56times speedup using just 18.9\% of the cache on AIME24.
Token-wise Influential Training Data Retrieval for Large Language Models
Given a Large Language Model (LLM) generation, how can we identify which training data led to this generation? In this paper, we proposed RapidIn, a scalable framework adapting to LLMs for estimating the influence of each training data. The proposed framework consists of two stages: caching and retrieval. First, we compress the gradient vectors by over 200,000x, allowing them to be cached on disk or in GPU/CPU memory. Then, given a generation, RapidIn efficiently traverses the cached gradients to estimate the influence within minutes, achieving over a 6,326x speedup. Moreover, RapidIn supports multi-GPU parallelization to substantially accelerate caching and retrieval. Our empirical result confirms the efficiency and effectiveness of RapidIn.
DataInf: Efficiently Estimating Data Influence in LoRA-tuned LLMs and Diffusion Models
Quantifying the impact of training data points is crucial for understanding the outputs of machine learning models and for improving the transparency of the AI pipeline. The influence function is a principled and popular data attribution method, but its computational cost often makes it challenging to use. This issue becomes more pronounced in the setting of large language models and text-to-image models. In this work, we propose DataInf, an efficient influence approximation method that is practical for large-scale generative AI models. Leveraging an easy-to-compute closed-form expression, DataInf outperforms existing influence computation algorithms in terms of computational and memory efficiency. Our theoretical analysis shows that DataInf is particularly well-suited for parameter-efficient fine-tuning techniques such as LoRA. Through systematic empirical evaluations, we show that DataInf accurately approximates influence scores and is orders of magnitude faster than existing methods. In applications to RoBERTa-large, Llama-2-13B-chat, and stable-diffusion-v1.5 models, DataInf effectively identifies the most influential fine-tuning examples better than other approximate influence scores. Moreover, it can help to identify which data points are mislabeled.
Efficient Data Selection at Scale via Influence Distillation
Effective data selection is critical for efficient training of modern Large Language Models (LLMs). This paper introduces Influence Distillation, a novel, mathematically-justified framework for data selection that employs second-order information to optimally weight training samples. By distilling each sample's influence on a target distribution, our method assigns model-specific weights that are used to select training data for LLM fine-tuning, guiding it toward strong performance on the target domain. We derive these optimal weights for both Gradient Descent and Adam optimizers. To ensure scalability and reduce computational cost, we propose a landmark-based approximation: influence is precisely computed for a small subset of "landmark" samples and then efficiently propagated to all other samples to determine their weights. We validate Influence Distillation by applying it to instruction tuning on the Tulu V2 dataset, targeting a range of tasks including GSM8k, SQuAD, and MMLU, across several models from the Llama and Qwen families. Experiments show that Influence Distillation matches or outperforms state-of-the-art performance while achieving up to 3.5times faster selection.
Detecting Calls to Action in Multimodal Content: Analysis of the 2021 German Federal Election Campaign on Instagram
This study investigates the automated classification of Calls to Action (CTAs) within the 2021 German Instagram election campaign to advance the understanding of mobilization in social media contexts. We analyzed over 2,208 Instagram stories and 712 posts using fine-tuned BERT models and OpenAI's GPT-4 models. The fine-tuned BERT model incorporating synthetic training data achieved a macro F1 score of 0.93, demonstrating a robust classification performance. Our analysis revealed that 49.58% of Instagram posts and 10.64% of stories contained CTAs, highlighting significant differences in mobilization strategies between these content types. Additionally, we found that FDP and the Greens had the highest prevalence of CTAs in posts, whereas CDU and CSU led in story CTAs.
DMin: Scalable Training Data Influence Estimation for Diffusion Models
Identifying the training data samples that most influence a generated image is a critical task in understanding diffusion models, yet existing influence estimation methods are constrained to small-scale or LoRA-tuned models due to computational limitations. As diffusion models scale up, these methods become impractical. To address this challenge, we propose DMin (Diffusion Model influence), a scalable framework for estimating the influence of each training data sample on a given generated image. By leveraging efficient gradient compression and retrieval techniques, DMin reduces storage requirements from 339.39 TB to only 726 MB and retrieves the top-k most influential training samples in under 1 second, all while maintaining performance. Our empirical results demonstrate DMin is both effective in identifying influential training samples and efficient in terms of computational and storage requirements.
Follow Us and Become Famous! Insights and Guidelines From Instagram Engagement Mechanisms
With 1.3 billion users, Instagram (IG) has also become a business tool. IG influencer marketing, expected to generate $33.25 billion in 2022, encourages companies and influencers to create trending content. Various methods have been proposed for predicting a post's popularity, i.e., how much engagement (e.g., Likes) it will generate. However, these methods are limited: first, they focus on forecasting the likes, ignoring the number of comments, which became crucial in 2021. Secondly, studies often use biased or limited data. Third, researchers focused on Deep Learning models to increase predictive performance, which are difficult to interpret. As a result, end-users can only estimate engagement after a post is created, which is inefficient and expensive. A better approach is to generate a post based on what people and IG like, e.g., by following guidelines. In this work, we uncover part of the underlying mechanisms driving IG engagement. To achieve this goal, we rely on statistical analysis and interpretable models rather than Deep Learning (black-box) approaches. We conduct extensive experiments using a worldwide dataset of 10 million posts created by 34K global influencers in nine different categories. With our simple yet powerful algorithms, we can predict engagement up to 94% of F1-Score, making us comparable and even superior to Deep Learning-based method. Furthermore, we propose a novel unsupervised algorithm for finding highly engaging topics on IG. Thanks to our interpretable approaches, we conclude by outlining guidelines for creating successful posts.
Politics, Sentiment and Virality: A Large-Scale Multilingual Twitter Analysis in Greece, Spain and United Kingdom
Social media has become extremely influential when it comes to policy making in modern societies especially in the western world (e.g., 48% of Europeans use social media every day or almost every day). Platforms such as Twitter allow users to follow politicians, thus making citizens more involved in political discussion. In the same vein, politicians use Twitter to express their opinions, debate among others on current topics and promote their political agenda aiming to influence voter behaviour. Previous studies have shown that tweets conveying negative sentiment are likely to be retweeted more frequently. In this paper, we attempt to analyse tweets of politicians from different countries and explore whether their tweets follow the same trend. Utilising state-of-the-art pre-trained language models we performed sentiment analysis on hundreds of thousands of tweets collected from members of parliament of Greece, Spain and United Kingdom, including devolved administrations. We achieved this by systematically exploring and analysing the differences between influential and less popular tweets. Our analysis indicates that politicians' negatively charged tweets spread more widely, especially in more recent times, and highlights interesting trends in the intersection of sentiment and popularity.
Improving Influence-based Instruction Tuning Data Selection for Balanced Learning of Diverse Capabilities
Selecting appropriate training data is crucial for effective instruction fine-tuning of large language models (LLMs), which aims to (1) elicit strong capabilities, and (2) achieve balanced performance across a diverse range of tasks. Influence-based methods show promise in achieving (1) by estimating the contribution of each training example to the model's predictions, but often struggle with (2). Our systematic investigation reveals that this underperformance can be attributed to an inherent bias where certain tasks intrinsically have greater influence than others. As a result, data selection is often biased towards these tasks, not only hurting the model's performance on others but also, counterintuitively, harms performance on these high-influence tasks themselves. As a remedy, we propose BIDS, a Balanced and Influential Data Selection algorithm. BIDS first normalizes influence scores of the training data, and then iteratively balances data selection by choosing the training example with the highest influence on the most underrepresented task. Experiments with both Llama-3 and Mistral-v0.3 on seven benchmarks spanning five diverse capabilities show that BIDS consistently outperforms both state-of-the-art influence-based algorithms and other non-influence-based selection frameworks. Surprisingly, training on a 15% subset selected by BIDS can even outperform full-dataset training with a much more balanced performance. Our analysis further highlights the importance of both instance-level normalization and iterative optimization of selected data for balanced learning of diverse capabilities.
Predicting Users' Value Changes by the Friends' Influence from Social Media Usage
Basic human values represent a set of values such as security, independence, success, kindness, and pleasure, which we deem important to our lives. Each of us holds different values with different degrees of significance. Existing studies show that values of a person can be identified from their social network usage. However, the value priority of a person may change over time due to different factors such as life experiences, influence, social structure and technology. Existing studies do not conduct any analysis regarding the change of users' value from the social influence, i.e., group persuasion, form the social media usage. In our research, first, we predict users' value score by the influence of friends from their social media usage. We propose a Bounded Confidence Model (BCM) based value dynamics model from 275 different ego networks in Facebook that predicts how social influence may persuade a person to change their value over time. Then, to predict better, we use particle swarm optimization based hyperparameter tuning technique. We observe that these optimized hyperparameters produce accurate future value score. We also run our approach with different machine learning based methods and find support vector regression (SVR) outperforms other regressor models. By using SVR with the best hyperparameters of BCM model, we find the lowest Mean Squared Error (MSE) score 0.00347.
How Long Is a Piece of String? A Brief Empirical Analysis of Tokenizers
Frontier LLMs are increasingly utilised across academia, society and industry. A commonly used unit for comparing models, their inputs and outputs, and estimating inference pricing is the token. In general, tokens are used as a stable currency, assumed to be broadly consistent across tokenizers and contexts, enabling direct comparisons. However, tokenization varies significantly across models and domains of text, making naive interpretation of token counts problematic. We quantify this variation by providing a comprehensive empirical analysis of tokenization, exploring the compression of sequences to tokens across different distributions of textual data. Our analysis challenges commonly held heuristics about token lengths, finding them to be overly simplistic. We hope the insights of our study add clarity and intuition toward tokenization in contemporary LLMs.
Data Valuation using Neural Networks for Efficient Instruction Fine-Tuning
Influence functions provide crucial insights into model training, but existing methods suffer from large computational costs and limited generalization. Particularly, recent works have proposed various metrics and algorithms to calculate the influence of data using language models, which do not scale well with large models and datasets. This is because of the expensive forward and backward passes required for computation, substantial memory requirements to store large models, and poor generalization of influence estimates to new data. In this paper, we explore the use of small neural networks -- which we refer to as the InfluenceNetwork -- to estimate influence values, achieving up to 99% cost reduction. Our evaluation demonstrates that influence values can be estimated with models just 0.0027% the size of full language models (we use 7B and 8B versions). We apply our algorithm of estimating influence values (called NN-CIFT: Neural Networks for effiCient Instruction Fine-Tuning) to the downstream task of subset selection for general instruction fine-tuning. In our study, we include four state-of-the-art influence functions and show no compromise in performance, despite large speedups, between NN-CIFT and the original influence functions. We provide an in-depth hyperparameter analyses of NN-CIFT. The code for our method can be found here: https://github.com/agarwalishika/NN-CIFT.
TokenButler: Token Importance is Predictable
Large Language Models (LLMs) rely on the Key-Value (KV) Cache to store token history, enabling efficient decoding of tokens. As the KV-Cache grows, it becomes a major memory and computation bottleneck, however, there is an opportunity to alleviate this bottleneck, especially because prior research has shown that only a small subset of tokens contribute meaningfully to each decoding step. A key challenge in finding these critical tokens is that they are dynamic, and heavily input query-dependent. Existing methods either risk quality by evicting tokens permanently, or retain the full KV-Cache but rely on retrieving chunks (pages) of tokens at generation, failing at dense, context-rich tasks. Additionally, many existing KV-Cache sparsity methods rely on inaccurate proxies for token importance. To address these limitations, we introduce TokenButler, a high-granularity, query-aware predictor that learns to identify these critical tokens. By training a light-weight predictor with less than 1.2% parameter overhead, TokenButler prioritizes tokens based on their contextual, predicted importance. This improves perplexity & downstream accuracy by over 8% relative to SoTA methods for estimating token importance. We evaluate TokenButler on a novel synthetic small-context co-referential retrieval task, demonstrating near-oracle accuracy. Code, models and benchmarks: https://github.com/abdelfattah-lab/TokenButler
Visually Wired NFTs: Exploring the Role of Inspiration in Non-Fungible Tokens
The fervor for Non-Fungible Tokens (NFTs) attracted countless creators, leading to a Big Bang of digital assets driven by latent or explicit forms of inspiration, as in many creative processes. This work exploits Vision Transformers and graph-based modeling to delve into visual inspiration phenomena between NFTs over the years. Our goals include unveiling the main structural traits that shape visual inspiration networks, exploring the interrelation between visual inspiration and asset performances, investigating crypto influence on inspiration processes, and explaining the inspiration relationships among NFTs. Our findings unveil how the pervasiveness of inspiration led to a temporary saturation of the visual feature space, the impact of the dichotomy between inspiring and inspired NFTs on their financial performance, and an intrinsic self-regulatory mechanism between markets and inspiration waves. Our work can serve as a starting point for gaining a broader view of the evolution of Web3.
TokSuite: Measuring the Impact of Tokenizer Choice on Language Model Behavior
Tokenizers provide the fundamental basis through which text is represented and processed by language models (LMs). Despite the importance of tokenization, its role in LM performance and behavior is poorly understood due to the challenge of measuring the impact of tokenization in isolation. To address this need, we present TokSuite, a collection of models and a benchmark that supports research into tokenization's influence on LMs. Specifically, we train fourteen models that use different tokenizers but are otherwise identical using the same architecture, dataset, training budget, and initialization. Additionally, we curate and release a new benchmark that specifically measures model performance subject to real-world perturbations that are likely to influence tokenization. Together, TokSuite allows robust decoupling of the influence of a model's tokenizer, supporting a series of novel findings that elucidate the respective benefits and shortcomings of a wide range of popular tokenizers.
Binary Tree Option Pricing Under Market Microstructure Effects: A Random Forest Approach
We propose a machine learning-based extension of the classical binomial option pricing model that incorporates key market microstructure effects. Traditional models assume frictionless markets, overlooking empirical features such as bid-ask spreads, discrete price movements, and serial return correlations. Our framework augments the binomial tree with path-dependent transition probabilities estimated via Random Forest classifiers trained on high-frequency market data. This approach preserves no-arbitrage conditions while embedding real-world trading dynamics into the pricing model. Using 46,655 minute-level observations of SPY from January to June 2025, we achieve an AUC of 88.25% in forecasting one-step price movements. Order flow imbalance is identified as the most influential predictor, contributing 43.2% to feature importance. After resolving time-scaling inconsistencies in tree construction, our model yields option prices that deviate by 13.79% from Black-Scholes benchmarks, highlighting the impact of microstructure on fair value estimation. While computational limitations restrict the model to short-term derivatives, our results offer a robust, data-driven alternative to classical pricing methods grounded in empirical market behavior.
Beyond One-Size-Fits-All: Personalized Harmful Content Detection with In-Context Learning
The proliferation of harmful online content--e.g., toxicity, spam, and negative sentiment--demands robust and adaptable moderation systems. However, prevailing moderation systems are centralized and task-specific, offering limited transparency and neglecting diverse user preferences--an approach ill-suited for privacy-sensitive or decentralized environments. We propose a novel framework that leverages in-context learning (ICL) with foundation models to unify the detection of toxicity, spam, and negative sentiment across binary, multi-class, and multi-label settings. Crucially, our approach enables lightweight personalization, allowing users to easily block new categories, unblock existing ones, or extend detection to semantic variations through simple prompt-based interventions--all without model retraining. Extensive experiments on public benchmarks (TextDetox, UCI SMS, SST2) and a new, annotated Mastodon dataset reveal that: (i) foundation models achieve strong cross-task generalization, often matching or surpassing task-specific fine-tuned models; (ii) effective personalization is achievable with as few as one user-provided example or definition; and (iii) augmenting prompts with label definitions or rationales significantly enhances robustness to noisy, real-world data. Our work demonstrates a definitive shift beyond one-size-fits-all moderation, establishing ICL as a practical, privacy-preserving, and highly adaptable pathway for the next generation of user-centric content safety systems. To foster reproducibility and facilitate future research, we publicly release our code on GitHub and the annotated Mastodon dataset on Hugging Face.
Data-Efficient Pretraining with Group-Level Data Influence Modeling
Data-efficient pretraining has shown tremendous potential to elevate scaling laws. This paper argues that effective pretraining data should be curated at the group level, treating a set of data points as a whole rather than as independent contributors. To achieve that, we propose Group-Level Data Influence Modeling (Group-MATES), a novel data-efficient pretraining method that captures and optimizes group-level data utility. Specifically, Group-MATES collects oracle group-level influences by locally probing the pretraining model with data sets. It then fine-tunes a relational data influence model to approximate oracles as relationship-weighted aggregations of individual influences. The fine-tuned model selects the data subset by maximizing its group-level influence prediction, with influence-aware clustering to enable efficient inference. Experiments on the DCLM benchmark demonstrate that Group-MATES achieves a 10% relative core score improvement on 22 downstream tasks over DCLM-Baseline and 5% over individual-influence-based methods, establishing a new state-of-the-art. Further analyses highlight the effectiveness of relational data influence models in capturing intricate interactions between data points.
EmTract: Investor Emotions and Market Behavior
We develop a tool that extracts emotions from social media text data. Our methodology has three main advantages. First, it is tailored for financial context; second, it incorporates key aspects of social media data, such as non-standard phrases, emojis and emoticons; and third, it operates by sequentially learning a latent representation that includes features such as word order, word usage, and local context. This tool, along with a user guide is available at: https://github.com/dvamossy/EmTract. Using EmTract, we explore the relationship between investor emotions expressed on social media and asset prices. We document a number of interesting insights. First, we confirm some of the findings of controlled laboratory experiments relating investor emotions to asset price movements. Second, we show that investor emotions are predictive of daily price movements. These impacts are larger when volatility or short interest are higher, and when institutional ownership or liquidity are lower. Third, increased investor enthusiasm prior to the IPO contributes to the large first-day return and long-run underperformance of IPO stocks. To corroborate our results, we provide a number of robustness checks, including using an alternative emotion model. Our findings reinforce the intuition that emotions and market dynamics are closely related, and highlight the importance of considering investor emotions when assessing a stock's short-term value.
Adapting and Evaluating Influence-Estimation Methods for Gradient-Boosted Decision Trees
Influence estimation analyzes how changes to the training data can lead to different model predictions; this analysis can help us better understand these predictions, the models making those predictions, and the data sets they're trained on. However, most influence-estimation techniques are designed for deep learning models with continuous parameters. Gradient-boosted decision trees (GBDTs) are a powerful and widely-used class of models; however, these models are black boxes with opaque decision-making processes. In the pursuit of better understanding GBDT predictions and generally improving these models, we adapt recent and popular influence-estimation methods designed for deep learning models to GBDTs. Specifically, we adapt representer-point methods and TracIn, denoting our new methods TREX and BoostIn, respectively; source code is available at https://github.com/jjbrophy47/tree_influence. We compare these methods to LeafInfluence and other baselines using 5 different evaluation measures on 22 real-world data sets with 4 popular GBDT implementations. These experiments give us a comprehensive overview of how different approaches to influence estimation work in GBDT models. We find BoostIn is an efficient influence-estimation method for GBDTs that performs equally well or better than existing work while being four orders of magnitude faster. Our evaluation also suggests the gold-standard approach of leave-one-out (LOO) retraining consistently identifies the single-most influential training example but performs poorly at finding the most influential set of training examples for a given target prediction.
TAROT: Targeted Data Selection via Optimal Transport
We propose TAROT, a targeted data selection framework grounded in optimal transport theory. Previous targeted data selection methods primarily rely on influence-based greedy heuristics to enhance domain-specific performance. While effective on limited, unimodal data (i.e., data following a single pattern), these methods struggle as target data complexity increases. Specifically, in multimodal distributions, these heuristics fail to account for multiple inherent patterns, leading to suboptimal data selection. This work identifies two primary factors contributing to this limitation: (i) the disproportionate impact of dominant feature components in high-dimensional influence estimation, and (ii) the restrictive linear additive assumptions inherent in greedy selection strategies. To address these challenges, TAROT incorporates whitened feature distance to mitigate dominant feature bias, providing a more reliable measure of data influence. Building on this, TAROT uses whitened feature distance to quantify and minimize the optimal transport distance between the selected data and target domains. Notably, this minimization also facilitates the estimation of optimal selection ratios. We evaluate TAROT across multiple tasks, including semantic segmentation, motion prediction, and instruction tuning. Results consistently show that TAROT outperforms state-of-the-art methods, highlighting its versatility across various deep learning tasks. Code is available at https://github.com/vita-epfl/TAROT.
TokenVerse: Versatile Multi-concept Personalization in Token Modulation Space
We present TokenVerse -- a method for multi-concept personalization, leveraging a pre-trained text-to-image diffusion model. Our framework can disentangle complex visual elements and attributes from as little as a single image, while enabling seamless plug-and-play generation of combinations of concepts extracted from multiple images. As opposed to existing works, TokenVerse can handle multiple images with multiple concepts each, and supports a wide-range of concepts, including objects, accessories, materials, pose, and lighting. Our work exploits a DiT-based text-to-image model, in which the input text affects the generation through both attention and modulation (shift and scale). We observe that the modulation space is semantic and enables localized control over complex concepts. Building on this insight, we devise an optimization-based framework that takes as input an image and a text description, and finds for each word a distinct direction in the modulation space. These directions can then be used to generate new images that combine the learned concepts in a desired configuration. We demonstrate the effectiveness of TokenVerse in challenging personalization settings, and showcase its advantages over existing methods. project's webpage in https://token-verse.github.io/
X-posing Free Speech: Examining the Impact of Moderation Relaxation on Online Social Networks
We investigate the impact of free speech and the relaxation of moderation on online social media platforms using Elon Musk's takeover of Twitter as a case study. By curating a dataset of over 10 million tweets, our study employs a novel framework combining content and network analysis. Our findings reveal a significant increase in the distribution of certain forms of hate content, particularly targeting the LGBTQ+ community and liberals. Network analysis reveals the formation of cohesive hate communities facilitated by influential bridge users, with substantial growth in interactions hinting at increased hate production and diffusion. By tracking the temporal evolution of PageRank, we identify key influencers, primarily self-identified far-right supporters disseminating hate against liberals and woke culture. Ironically, embracing free speech principles appears to have enabled hate speech against the very concept of freedom of expression and free speech itself. Our findings underscore the delicate balance platforms must strike between open expression and robust moderation to curb the proliferation of hate online.
Learning More with Less: A Dynamic Dual-Level Down-Sampling Framework for Efficient Policy Optimization
Critic-free methods like GRPO reduce memory demands by estimating advantages from multiple rollouts but tend to converge slowly, as critical learning signals are diluted by an abundance of uninformative samples and tokens. To tackle this challenge, we propose the Dynamic Dual-Level Down-Sampling (D^3S) framework that prioritizes the most informative samples and tokens across groups to improve the efficient of policy optimization. D^3S operates along two levels: (1) the sample-level, which selects a subset of rollouts to maximize advantage variance (Var(A)). We theoretically proven that this selection is positively correlated with the upper bound of the policy gradient norms, yielding higher policy gradients. (2) the token-level, which prioritizes tokens with a high product of advantage magnitude and policy entropy (|A_{i,t}|times H_{i,t}), focusing updates on tokens where the policy is both uncertain and impactful. Moreover, to prevent overfitting to high-signal data, D^3S employs a dynamic down-sampling schedule inspired by curriculum learning. This schedule starts with aggressive down-sampling to accelerate early learning and gradually relaxes to promote robust generalization. Extensive experiments on Qwen2.5 and Llama3.1 demonstrate that integrating D^3S into advanced RL algorithms achieves state-of-the-art performance and generalization while requiring fewer samples and tokens across diverse reasoning benchmarks. Our code is added in the supplementary materials and will be made publicly available.
KTAE: A Model-Free Algorithm to Key-Tokens Advantage Estimation in Mathematical Reasoning
Recent advances have demonstrated that integrating reinforcement learning with rule-based rewards can significantly enhance the reasoning capabilities of large language models, even without supervised fine-tuning. However, prevalent reinforcement learning algorithms such as GRPO and its variants like DAPO, suffer from a coarse granularity issue when computing the advantage. Specifically, they compute rollout-level advantages that assign identical values to every token within a sequence, failing to capture token-specific contributions and hindering effective learning. To address this limitation, we propose Key-token Advantage Estimation (KTAE) - a novel algorithm that estimates fine-grained, token-level advantages without introducing additional models. KTAE leverages the correctness of sampled rollouts and applies statistical analysis to quantify the importance of individual tokens within a sequence to the final outcome. This quantified token-level importance is then combined with the rollout-level advantage to obtain a more fine-grained token-level advantage estimation. Empirical results show that models trained with GRPO+KTAE and DAPO+KTAE outperform baseline methods across five mathematical reasoning benchmarks. Notably, they achieve higher accuracy with shorter responses and even surpass R1-Distill-Qwen-1.5B using the same base model.
Capacity Constrained Influence Maximization in Social Networks
Influence maximization (IM) aims to identify a small number of influential individuals to maximize the information spread and finds applications in various fields. It was first introduced in the context of viral marketing, where a company pays a few influencers to promote the product. However, apart from the cost factor, the capacity of individuals to consume content poses challenges for implementing IM in real-world scenarios. For example, players on online gaming platforms can only interact with a limited number of friends. In addition, we observe that in these scenarios, (i) the initial adopters of promotion are likely to be the friends of influencers rather than the influencers themselves, and (ii) existing IM solutions produce sub-par results with high computational demands. Motivated by these observations, we propose a new IM variant called capacity constrained influence maximization (CIM), which aims to select a limited number of influential friends for each initial adopter such that the promotion can reach more users. To solve CIM effectively, we design two greedy algorithms, MG-Greedy and RR-Greedy, ensuring the 1/2-approximation ratio. To improve the efficiency, we devise the scalable implementation named RR-OPIM+ with (1/2-epsilon)-approximation and near-linear running time. We extensively evaluate the performance of 9 approaches on 6 real-world networks, and our solutions outperform all competitors in terms of result quality and running time. Additionally, we deploy RR-OPIM+ to online game scenarios, which improves the baseline considerably.
ReAGent: Towards A Model-agnostic Feature Attribution Method for Generative Language Models
Feature attribution methods (FAs), such as gradients and attention, are widely employed approaches to derive the importance of all input features to the model predictions. Existing work in natural language processing has mostly focused on developing and testing FAs for encoder-only language models (LMs) in classification tasks. However, it is unknown if it is faithful to use these FAs for decoder-only models on text generation, due to the inherent differences between model architectures and task settings respectively. Moreover, previous work has demonstrated that there is no `one-wins-all' FA across models and tasks. This makes the selection of a FA computationally expensive for large LMs since input importance derivation often requires multiple forward and backward passes including gradient computations that might be prohibitive even with access to large compute. To address these issues, we present a model-agnostic FA for generative LMs called Recursive Attribution Generator (ReAGent). Our method updates the token importance distribution in a recursive manner. For each update, we compute the difference in the probability distribution over the vocabulary for predicting the next token between using the original input and using a modified version where a part of the input is replaced with RoBERTa predictions. Our intuition is that replacing an important token in the context should have resulted in a larger change in the model's confidence in predicting the token than replacing an unimportant token. Our method can be universally applied to any generative LM without accessing internal model weights or additional training and fine-tuning, as most other FAs require. We extensively compare the faithfulness of ReAGent with seven popular FAs across six decoder-only LMs of various sizes. The results show that our method consistently provides more faithful token importance distributions.
A Token-level Text Image Foundation Model for Document Understanding
In recent years, general visual foundation models (VFMs) have witnessed increasing adoption, particularly as image encoders for popular multi-modal large language models (MLLMs). However, without semantically fine-grained supervision, these models still encounter fundamental prediction errors in the context of downstream text-image-related tasks, i.e., perception, understanding and reasoning with images containing small and dense texts. To bridge this gap, we develop TokenOCR, the first token-level visual foundation model specifically tailored for text-image-related tasks, designed to support a variety of traditional downstream applications. To facilitate the pretraining of TokenOCR, we also devise a high-quality data production pipeline that constructs the first token-level image text dataset, TokenIT, comprising 20 million images and 1.8 billion token-mask pairs. Furthermore, leveraging this foundation with exceptional image-as-text capability, we seamlessly replace previous VFMs with TokenOCR to construct a document-level MLLM, TokenVL, for VQA-based document understanding tasks. Finally, extensive experiments demonstrate the effectiveness of TokenOCR and TokenVL. Code, datasets, and weights will be available at https://token-family.github.io/TokenOCR_project.
Order-agnostic Identifier for Large Language Model-based Generative Recommendation
Leveraging Large Language Models (LLMs) for generative recommendation has attracted significant research interest, where item tokenization is a critical step. It involves assigning item identifiers for LLMs to encode user history and generate the next item. Existing approaches leverage either token-sequence identifiers, representing items as discrete token sequences, or single-token identifiers, using ID or semantic embeddings. Token-sequence identifiers face issues such as the local optima problem in beam search and low generation efficiency due to step-by-step generation. In contrast, single-token identifiers fail to capture rich semantics or encode Collaborative Filtering (CF) information, resulting in suboptimal performance. To address these issues, we propose two fundamental principles for item identifier design: 1) integrating both CF and semantic information to fully capture multi-dimensional item information, and 2) designing order-agnostic identifiers without token dependency, mitigating the local optima issue and achieving simultaneous generation for generation efficiency. Accordingly, we introduce a novel set identifier paradigm for LLM-based generative recommendation, representing each item as a set of order-agnostic tokens. To implement this paradigm, we propose SETRec, which leverages CF and semantic tokenizers to obtain order-agnostic multi-dimensional tokens. To eliminate token dependency, SETRec uses a sparse attention mask for user history encoding and a query-guided generation mechanism for simultaneous token generation. We instantiate SETRec on T5 and Qwen (from 1.5B to 7B). Extensive experiments demonstrate its effectiveness under various scenarios (e.g., full ranking, warm- and cold-start ranking, and various item popularity groups). Moreover, results validate SETRec's superior efficiency and show promising scalability on cold-start items as model sizes increase.
Tokenizer Choice For LLM Training: Negligible or Crucial?
The recent success of LLMs has been predominantly driven by curating the training dataset composition, scaling of model architectures and dataset sizes and advancements in pretraining objectives, leaving tokenizer influence as a blind spot. Shedding light on this underexplored area, we conduct a comprehensive study on the influence of tokenizer choice on LLM downstream performance by training 24 mono- and multilingual LLMs at a 2.6B parameter scale, ablating different tokenizer algorithms and parameterizations. Our studies highlight that the tokenizer choice can significantly impact the model's downstream performance, training and inference costs. In particular, we find that the common tokenizer evaluation metrics fertility and parity are not always predictive of model downstream performance, rendering these metrics a questionable proxy for the model's downstream performance. Furthermore, we show that multilingual tokenizers trained on the five most frequent European languages require vocabulary size increases of factor three in comparison to English. While English-only tokenizers have been applied to the training of multi-lingual LLMs, we find that this approach results in a severe downstream performance degradation and additional training costs of up to 68%, due to an inefficient tokenization vocabulary.
Focus-dLLM: Accelerating Long-Context Diffusion LLM Inference via Confidence-Guided Context Focusing
Diffusion Large Language Models (dLLMs) deliver strong long-context processing capability in a non-autoregressive decoding paradigm. However, the considerable computational cost of bidirectional full attention limits the inference efficiency. Although sparse attention is promising, existing methods remain ineffective. This stems from the need to estimate attention importance for tokens yet to be decoded, while the unmasked token positions are unknown during diffusion. In this paper, we present Focus-dLLM, a novel training-free attention sparsification framework tailored for accurate and efficient long-context dLLM inference. Based on the finding that token confidence strongly correlates across adjacent steps, we first design a past confidence-guided indicator to predict unmasked regions. Built upon this, we propose a sink-aware pruning strategy to accurately estimate and remove redundant attention computation, while preserving highly influential attention sinks. To further reduce overhead, this strategy reuses identified sink locations across layers, leveraging the observed cross-layer consistency. Experimental results show that our method offers more than 29times lossless speedup under 32K context length. The code is publicly available at: https://github.com/Longxmas/Focus-dLLM
TransPrune: Token Transition Pruning for Efficient Large Vision-Language Model
Large Vision-Language Models (LVLMs) have advanced multimodal learning but face high computational costs due to the large number of visual tokens, motivating token pruning to improve inference efficiency. The key challenge lies in identifying which tokens are truly important. Most existing approaches rely on attention-based criteria to estimate token importance. However, they inherently suffer from certain limitations, such as positional bias. In this work, we explore a new perspective on token importance based on token transitions in LVLMs. We observe that the transition of token representations provides a meaningful signal of semantic information. Based on this insight, we propose TransPrune, a training-free and efficient token pruning method. Specifically, TransPrune progressively prunes tokens by assessing their importance through a combination of Token Transition Variation (TTV)-which measures changes in both the magnitude and direction of token representations-and Instruction-Guided Attention (IGA), which measures how strongly the instruction attends to image tokens via attention. Extensive experiments demonstrate that TransPrune achieves comparable multimodal performance to original LVLMs, such as LLaVA-v1.5 and LLaVA-Next, across eight benchmarks, while reducing inference TFLOPs by more than half. Moreover, TTV alone can serve as an effective criterion without relying on attention, achieving performance comparable to attention-based methods. The code will be made publicly available upon acceptance of the paper at https://github.com/liaolea/TransPrune.
OneTrans: Unified Feature Interaction and Sequence Modeling with One Transformer in Industrial Recommender
In recommendation systems, scaling up feature-interaction modules (e.g., Wukong, RankMixer) or user-behavior sequence modules (e.g., LONGER) has achieved notable success. However, these efforts typically proceed on separate tracks, which not only hinders bidirectional information exchange but also prevents unified optimization and scaling. In this paper, we propose OneTrans, a unified Transformer backbone that simultaneously performs user-behavior sequence modeling and feature interaction. OneTrans employs a unified tokenizer to convert both sequential and non-sequential attributes into a single token sequence. The stacked OneTrans blocks share parameters across similar sequential tokens while assigning token-specific parameters to non-sequential tokens. Through causal attention and cross-request KV caching, OneTrans enables precomputation and caching of intermediate representations, significantly reducing computational costs during both training and inference. Experimental results on industrial-scale datasets demonstrate that OneTrans scales efficiently with increasing parameters, consistently outperforms strong baselines, and yields a 5.68% lift in per-user GMV in online A/B tests.
xbench: Tracking Agents Productivity Scaling with Profession-Aligned Real-World Evaluations
We introduce xbench, a dynamic, profession-aligned evaluation suite designed to bridge the gap between AI agent capabilities and real-world productivity. While existing benchmarks often focus on isolated technical skills, they may not accurately reflect the economic value agents deliver in professional settings. To address this, xbench targets commercially significant domains with evaluation tasks defined by industry professionals. Our framework creates metrics that strongly correlate with productivity value, enables prediction of Technology-Market Fit (TMF), and facilitates tracking of product capabilities over time. As our initial implementations, we present two benchmarks: Recruitment and Marketing. For Recruitment, we collect 50 tasks from real-world headhunting business scenarios to evaluate agents' abilities in company mapping, information retrieval, and talent sourcing. For Marketing, we assess agents' ability to match influencers with advertiser needs, evaluating their performance across 50 advertiser requirements using a curated pool of 836 candidate influencers. We present initial evaluation results for leading contemporary agents, establishing a baseline for these professional domains. Our continuously updated evalsets and evaluations are available at https://xbench.org.
Padding Tone: A Mechanistic Analysis of Padding Tokens in T2I Models
Text-to-image (T2I) diffusion models rely on encoded prompts to guide the image generation process. Typically, these prompts are extended to a fixed length by adding padding tokens before text encoding. Despite being a default practice, the influence of padding tokens on the image generation process has not been investigated. In this work, we conduct the first in-depth analysis of the role padding tokens play in T2I models. We develop two causal techniques to analyze how information is encoded in the representation of tokens across different components of the T2I pipeline. Using these techniques, we investigate when and how padding tokens impact the image generation process. Our findings reveal three distinct scenarios: padding tokens may affect the model's output during text encoding, during the diffusion process, or be effectively ignored. Moreover, we identify key relationships between these scenarios and the model's architecture (cross or self-attention) and its training process (frozen or trained text encoder). These insights contribute to a deeper understanding of the mechanisms of padding tokens, potentially informing future model design and training practices in T2I systems.
Language Semantics Interpretation with an Interaction-based Recurrent Neural Networks
Text classification is a fundamental language task in Natural Language Processing. A variety of sequential models is capable making good predictions yet there is lack of connection between language semantics and prediction results. This paper proposes a novel influence score (I-score), a greedy search algorithm called Backward Dropping Algorithm (BDA), and a novel feature engineering technique called the "dagger technique". First, the paper proposes a novel influence score (I-score) to detect and search for the important language semantics in text document that are useful for making good prediction in text classification tasks. Next, a greedy search algorithm called the Backward Dropping Algorithm is proposed to handle long-term dependencies in the dataset. Moreover, the paper proposes a novel engineering technique called the "dagger technique" that fully preserve the relationship between explanatory variable and response variable. The proposed techniques can be further generalized into any feed-forward Artificial Neural Networks (ANNs) and Convolutional Neural Networks (CNNs), and any neural network. A real-world application on the Internet Movie Database (IMDB) is used and the proposed methods are applied to improve prediction performance with an 81% error reduction comparing with other popular peers if I-score and "dagger technique" are not implemented.
Contextual Tokenization for Graph Inverted Indices
Retrieving graphs from a large corpus, that contain a subgraph isomorphic to a given query graph, is a core operation in many real-world applications. While recent multi-vector graph representations and scores based on set alignment and containment can provide accurate subgraph isomorphism tests, their use in retrieval remains limited by their need to score corpus graphs exhaustively. We introduce CORGII (Contextual Representation of Graphs for Inverted Indexing), a graph indexing framework in which, starting with a contextual dense graph representation, a differentiable discretization module computes sparse binary codes over a learned latent vocabulary. This text document-like representation allows us to leverage classic, highly optimized inverted indices, while supporting soft (vector) set containment scores. Pushing this paradigm further, we replace the classical, fixed impact weight of a `token' on a graph (such as TFIDF or BM25) with a data-driven, trainable impact weight. Finally, we explore token expansion to support multi-probing the index for smoother accuracy-efficiency tradeoffs. To our knowledge, CORGII is the first indexer of dense graph representations using discrete tokens mapping to efficient inverted lists. Extensive experiments show that CORGII provides better trade-offs between accuracy and efficiency, compared to several baselines.
Zero-TPrune: Zero-Shot Token Pruning through Leveraging of the Attention Graph in Pre-Trained Transformers
Deployment of Transformer models on edge devices is becoming increasingly challenging due to the exponentially growing inference cost that scales quadratically with the number of tokens in the input sequence. Token pruning is an emerging solution to address this challenge due to its ease of deployment on various Transformer backbones. However, most token pruning methods require computationally expensive fine-tuning, which is undesirable in many edge deployment cases. In this work, we propose Zero-TPrune, the first zero-shot method that considers both the importance and similarity of tokens in performing token pruning. It leverages the attention graph of pre-trained Transformer models to produce an importance distribution for tokens via our proposed Weighted Page Rank (WPR) algorithm. This distribution further guides token partitioning for efficient similarity-based pruning. Due to the elimination of the fine-tuning overhead, Zero-TPrune can prune large models at negligible computational cost, switch between different pruning configurations at no computational cost, and perform hyperparameter tuning efficiently. We evaluate the performance of Zero-TPrune on vision tasks by applying it to various vision Transformer backbones and testing them on ImageNet. Without any fine-tuning, Zero-TPrune reduces the FLOPs cost of DeiT-S by 34.7\% and improves its throughput by 45.3\% with only 0.4\% accuracy loss. Compared with state-of-the-art pruning methods that require fine-tuning, Zero-TPrune not only eliminates the need for fine-tuning after pruning but also does so with only 0.1\% accuracy loss. Compared with state-of-the-art fine-tuning-free pruning methods, Zero-TPrune reduces accuracy loss by up to 49\% with the same or higher throughput.
Sticking to the Mean: Detecting Sticky Tokens in Text Embedding Models
Despite the widespread use of Transformer-based text embedding models in NLP tasks, surprising 'sticky tokens' can undermine the reliability of embeddings. These tokens, when repeatedly inserted into sentences, pull sentence similarity toward a certain value, disrupting the normal distribution of embedding distances and degrading downstream performance. In this paper, we systematically investigate such anomalous tokens, formally defining them and introducing an efficient detection method, Sticky Token Detector (STD), based on sentence and token filtering. Applying STD to 40 checkpoints across 14 model families, we discover a total of 868 sticky tokens. Our analysis reveals that these tokens often originate from special or unused entries in the vocabulary, as well as fragmented subwords from multilingual corpora. Notably, their presence does not strictly correlate with model size or vocabulary size. We further evaluate how sticky tokens affect downstream tasks like clustering and retrieval, observing significant performance drops of up to 50%. Through attention-layer analysis, we show that sticky tokens disproportionately dominate the model's internal representations, raising concerns about tokenization robustness. Our findings show the need for better tokenization strategies and model design to mitigate the impact of sticky tokens in future text embedding applications.
FediverseSharing: A Novel Dataset on Cross-Platform Interaction Dynamics between Threads and Mastodon Users
Traditional social media platforms, once envisioned as digital town squares, face growing criticism over corporate control, content moderation, and privacy concerns. Events such as Twitter's acquisition(now X) and major policy changes have driven users toward alternative platforms like Mastodon and Threads. However, this diversification has led to user dispersion and fragmented discussions across isolated social media platforms. To address these issues, federation protocols like ActivityPub have been adopted, with Mastodon leading efforts to build decentralized yet interconnected networks. In March 2024, Threads joined this federation by introducing its Fediverse Sharing service, which enables interactions such as posts, replies, and likes between Threads and Mastodon users as if on a unified platform. Building on this development, we introduce FediverseSharing, the first dataset capturing interactions between 20,000+ Threads users and 20,000+ Mastodon users over a ten-month period. This dataset serves as a foundation for studying cross-platform interactions and the impact of federation as previously two separate platforms integrate.
One Token Is Enough: Improving Diffusion Language Models with a Sink Token
Diffusion Language Models (DLMs) have emerged as a compelling alternative to autoregressive approaches, enabling parallel text generation with competitive performance. Despite these advantages, there is a critical instability in DLMs: the moving sink phenomenon. Our analysis indicates that sink tokens exhibit low-norm representations in the Transformer's value space, and that the moving sink phenomenon serves as a protective mechanism in DLMs to prevent excessive information mixing. However, their unpredictable positions across diffusion steps undermine inference robustness. To resolve this, we propose a simple but effective extra sink token implemented via a modified attention mask. Specifically, we introduce a special token constrained to attend solely to itself, while remaining globally visible to all other tokens. Experimental results demonstrate that introducing a single extra token stabilizes attention sinks, substantially improving model performance. Crucially, further analysis confirms that the effectiveness of this token is independent of its position and characterized by negligible semantic content, validating its role as a robust and dedicated structural sink.
Attention Score is not All You Need for Token Importance Indicator in KV Cache Reduction: Value Also Matters
Scaling the context size of large language models (LLMs) enables them to perform various new tasks, e.g., book summarization. However, the memory cost of the Key and Value (KV) cache in attention significantly limits the practical applications of LLMs. Recent works have explored token pruning for KV cache reduction in LLMs, relying solely on attention scores as a token importance indicator. However, our investigation into value vector norms revealed a notably non-uniform pattern questioning their reliance only on attention scores. Inspired by this, we propose a new method: Value-Aware Token Pruning (VATP) which uses both attention scores and the ell_{1} norm of value vectors to evaluate token importance. Extensive experiments on LLaMA2-7B-chat and Vicuna-v1.5-7B across 16 LongBench tasks demonstrate VATP's superior performance.
Stop Looking for Important Tokens in Multimodal Language Models: Duplication Matters More
Vision tokens in multimodal large language models often dominate huge computational overhead due to their excessive length compared to linguistic modality. Abundant recent methods aim to solve this problem with token pruning, which first defines an importance criterion for tokens and then prunes the unimportant vision tokens during inference. However, in this paper, we show that the importance is not an ideal indicator to decide whether a token should be pruned. Surprisingly, it usually results in inferior performance than random token pruning and leading to incompatibility to efficient attention computation operators.Instead, we propose DART (Duplication-Aware Reduction of Tokens), which prunes tokens based on its duplication with other tokens, leading to significant and training-free acceleration. Concretely, DART selects a small subset of pivot tokens and then retains the tokens with low duplication to the pivots, ensuring minimal information loss during token pruning. Experiments demonstrate that DART can prune 88.9% vision tokens while maintaining comparable performance, leading to a 1.99times and 2.99times speed-up in total time and prefilling stage, respectively, with good compatibility to efficient attention operators. Our codes are available at https://github.com/ZichenWen1/DART.
Probability-Entropy Calibration: An Elastic Indicator for Adaptive Fine-tuning
Token-level reweighting is a simple yet effective mechanism for controlling supervised fine-tuning, but common indicators are largely one-dimensional: the ground-truth probability reflects downstream alignment, while token entropy reflects intrinsic uncertainty induced by the pre-training prior. Ignoring entropy can misidentify noisy or easily replaceable tokens as learning-critical, while ignoring probability fails to reflect target-specific alignment. RankTuner introduces a probability--entropy calibration signal, the Relative Rank Indicator, which compares the rank of the ground-truth token with its expected rank under the prediction distribution. The inverse indicator is used as a token-wise Relative Scale to reweight the fine-tuning objective, focusing updates on truly under-learned tokens without over-penalizing intrinsically uncertain positions. Experiments on multiple backbones show consistent improvements on mathematical reasoning benchmarks, transfer gains on out-of-distribution reasoning, and pre code generation performance over probability-only or entropy-only reweighting baselines.
ENTRA: Entropy-Based Redundancy Avoidance in Large Language Model Reasoning
Large Reasoning Models (LRMs) often suffer from overthinking, generating unnecessarily long reasoning chains even for simple tasks. This leads to substantial computational overhead with limited performance gain, primarily due to redundant verification and repetitive generation. While prior work typically constrains output length or optimizes correctness, such coarse supervision fails to guide models toward concise yet accurate inference. In this paper, we propose ENTRA, an entropy-based training framework that suppresses redundant reasoning while preserving performance. ENTRA first estimates the token-level importance using a lightweight Bidirectional Importance Estimation (BIE) method, which accounts for both prediction confidence and forward influence. It then computes a redundancy reward based on the entropy of low-importance tokens, normalized by its theoretical upper bound, and optimizes this reward via reinforcement learning. Experiments on mathematical reasoning benchmarks demonstrate that ENTRA reduces output length by 37% to 53% with no loss-and in some cases, gains-in accuracy. Our approach offers a principled and efficient solution to reduce overthinking in LRMs, and provides a generalizable path toward redundancy-aware reasoning optimization.
The Koo Dataset: An Indian Microblogging Platform With Global Ambitions
Increasingly, alternative platforms are playing a key role in the social media ecosystem. Koo, a microblogging platform based in India, has emerged as a major new social network hosting high profile politicians from several countries (India, Brazil, Nigeria) and many internationally renowned celebrities. This paper presents the largest publicly available Koo dataset, spanning from the platform's founding in early 2020 to September 2023, providing detailed metadata for 72M posts, 75M comments, 40M shares, 284M likes and 1.4M user profiles. Along with the release of the dataset, we provide an overview of the platform including a discussion of the news ecosystem on the platform, hashtag usage and user engagement. Our results highlight the pivotal role that new platforms play in shaping online communities in emerging economies and the Global South, connecting local politicians and public figures with their followers. With Koo's ambition to become the town hall for diverse non-English speaking communities, our dataset offers new opportunities for studying social media beyond a Western context.
SOC: hunting the underground inside story of the ethereum Social-network Opinion and Comment
The cryptocurrency is attracting more and more attention because of the blockchain technology. Ethereum is gaining a significant popularity in blockchain community, mainly due to the fact that it is designed in a way that enables developers to write smart contracts and decentralized applications (Dapps). There are many kinds of cryptocurrency information on the social network. The risks and fraud problems behind it have pushed many countries including the United States, South Korea, and China to make warnings and set up corresponding regulations. However, the security of Ethereum smart contracts has not gained much attention. Through the Deep Learning approach, we propose a method of sentiment analysis for Ethereum's community comments. In this research, we first collected the users' cryptocurrency comments from the social network and then fed to our LSTM + CNN model for training. Then we made prediction through sentiment analysis. With our research result, we have demonstrated that both the precision and the recall of sentiment analysis can achieve 0.80+. More importantly, we deploy our sentiment analysis1 on RatingToken and Coin Master (mobile application of Cheetah Mobile Blockchain Security Center23). We can effectively provide detail information to resolve the risks of being fake and fraud problems.
DA-MoE: Towards Dynamic Expert Allocation for Mixture-of-Experts Models
Transformer-based Mixture-of-Experts (MoE) models have been driving several recent technological advancements in Natural Language Processing (NLP). These MoE models adopt a router mechanism to determine which experts to activate for routing input tokens. However, existing router mechanisms allocate a fixed number of experts to each token, which neglects the varying importance of different input tokens. In this study, we propose a novel dynamic router mechanism that Dynamically Allocates a variable number of experts for Mixture-of-Experts (DA-MoE) models based on an effective token importance measure. First, we show that the Transformer attention mechanism provides a natural and effective way of calculating token importance. Second, we propose a dynamic router mechanism that effectively decides the optimal number of experts (K) and allocates the top-K experts for each input token. Third, comprehensive experiments on several benchmark datasets demonstrate that our DA-MoE approach consistently outperforms the state-of-the-art Transformer based MoE model on the popular GLUE benchmark.
Leveraging Large Language Models to Detect Influence Campaigns in Social Media
Social media influence campaigns pose significant challenges to public discourse and democracy. Traditional detection methods fall short due to the complexity and dynamic nature of social media. Addressing this, we propose a novel detection method using Large Language Models (LLMs) that incorporates both user metadata and network structures. By converting these elements into a text format, our approach effectively processes multilingual content and adapts to the shifting tactics of malicious campaign actors. We validate our model through rigorous testing on multiple datasets, showcasing its superior performance in identifying influence efforts. This research not only offers a powerful tool for detecting campaigns, but also sets the stage for future enhancements to keep up with the fast-paced evolution of social media-based influence tactics.
Robustness Tokens: Towards Adversarial Robustness of Transformers
Recently, large pre-trained foundation models have become widely adopted by machine learning practitioners for a multitude of tasks. Given that such models are publicly available, relying on their use as backbone models for downstream tasks might result in high vulnerability to adversarial attacks crafted with the same public model. In this work, we propose Robustness Tokens, a novel approach specific to the transformer architecture that fine-tunes a few additional private tokens with low computational requirements instead of tuning model parameters as done in traditional adversarial training. We show that Robustness Tokens make Vision Transformer models significantly more robust to white-box adversarial attacks while also retaining the original downstream performances.
Compact Example-Based Explanations for Language Models
Training data influence estimation methods quantify the contribution of training documents to a model's output, making them a promising source of information for example-based explanations. As humans cannot interpret thousands of documents, only a small subset of the training data can be presented as an explanation. Although the choice of which documents to include directly affects explanation quality, previous evaluations of such systems have largely ignored any selection strategies. To address this, we propose a novel selection relevance score, a retraining-free metric that quantifies how useful a set of examples is for explaining a model's output. We validate this score through fine-tuning experiments, confirming that it can predict whether a set of examples supports or undermines the model's predictions. Using this metric, we further show that common selection strategies often underperform random selection. Motivated by this finding, we propose a strategy that balances influence and representativeness, enabling better use of selection budgets than naively selecting the highest-ranking examples.
Process-Supervised LLM Recommenders via Flow-guided Tuning
While large language models (LLMs) are increasingly adapted for recommendation systems via supervised fine-tuning (SFT), this approach amplifies popularity bias due to its likelihood maximization objective, compromising recommendation diversity and fairness. To address this, we present Flow-guided fine-tuning recommender (Flower), which replaces SFT with a Generative Flow Network (GFlowNet) framework that enacts process supervision through token-level reward propagation. Flower's key innovation lies in decomposing item-level rewards into constituent token rewards, enabling direct alignment between token generation probabilities and their reward signals. This mechanism achieves three critical advancements: (1) popularity bias mitigation and fairness enhancement through empirical distribution matching, (2) preservation of diversity through GFlowNet's proportional sampling, and (3) flexible integration of personalized preferences via adaptable token rewards. Experiments demonstrate Flower's superior distribution-fitting capability and its significant advantages over traditional SFT in terms of fairness, diversity, and accuracy, highlighting its potential to improve LLM-based recommendation systems. The implementation is available via https://github.com/Mr-Peach0301/Flower
Evaluating Tokenizer Performance of Large Language Models Across Official Indian Languages
Large Language Models (LLMs) based on transformer architectures have revolutionized a variety of domains, with tokenization playing a pivotal role in their pre-processing and fine-tuning stages. In multilingual models, particularly those tailored for Indic languages, effective tokenization is crucial for optimizing performance. This paper presents a comprehensive evaluation of tokenizers used by 12 LLMs across all 22 official languages of India, with a focus on comparing the efficiency of their tokenization processes. We employed the Normalized Sequence Length (NSL) as a key metric in our analysis. Our findings reveal that the SUTRA tokenizer outperforms all other models, including several Indic-specific models, excelling in 14 languages. Notable insights include the SUTRA tokenizer's superior handling of Indic languages, GPT-4o's advancement over its predecessor GPT-4 in processing Indian languages, and the limited performance of Project Indus in certain languages. This study underscores the critical importance of developing targeted tokenization strategies for multilingual and Indic-centric models, laying the groundwork for future improvements in tokenizer design to enhance linguistic coverage and model efficiency.
Explaining and Mitigating Crosslingual Tokenizer Inequities
The number of tokens it takes to encode parallel text in different languages is known to vary. These disparities are called token premiums. Having high token premiums leads to less throughput during training and increases costs at inference. In this paper, we show that even after controlling for dataset size, vocabulary size, and data content, monolingual tokenizers exhibit a wide range of token premiums across languages. To understand the cross-linguistic differences that cause these token premiums, we train a suite of approximately 7,000 comparable monolingual tokenizers for 97 languages, manipulating tokenization algorithm, vocabulary size, and dataset size. We measure token premiums and test for a relationship between factors such as data similarity (between tokenizer training and evaluation), vocabulary size, and pre-tokenization. We also investigate the role of language-specific features such as writing system and word length. We find that similarity between training and test data does not impact token premiums, but vocabulary size and pre-tokenization do. While simply increasing vocabulary size does not lead to reduced token premium effects, we can determine an ``optimal'' vocabulary size for each language to achieve significantly reduced token premium effects. We also train superword tokenizers which allow merges over whitespaces, and we find that they both reduce token premium effects and improve compression overall. Thus, intervening on the vocabulary size or the pre-tokenizer significantly reduces crosslingual token premium effects.
Efficient Multi-Agent System Training with Data Influence-Oriented Tree Search
Monte Carlo Tree Search (MCTS) based methods provide promising approaches for generating synthetic data to enhance the self-training of Large Language Model (LLM) based multi-agent systems (MAS). These methods leverage Q-values to estimate individual agent contributions. However, relying solely on Q-values to identify informative data may misalign with the data synthesis objective, as the focus should be on selecting data that best enhances model training. To address this discrepancy, we propose Data Influence-oriented Tree Search (DITS), a novel framework that incorporates influence scores to guide both tree search and data selection. By leveraging influence scores, we effectively identify the most impactful data for system improvement, thereby enhancing model performance. Furthermore, we derive influence score estimation methods tailored for non-differentiable metrics, significantly reducing computational overhead by utilizing inference computations. Extensive experiments on eight multi-agent datasets demonstrate the robustness and effectiveness of the proposed methods. Notably, our findings reveal that allocating more inference resources to estimate influence scores, rather than Q-values, during data synthesis can more effectively and efficiently enhance model training.
KL3M Tokenizers: A Family of Domain-Specific and Character-Level Tokenizers for Legal, Financial, and Preprocessing Applications
We present the KL3M tokenizers, a family of specialized tokenizers for legal, financial, and governmental text. Despite established work on tokenization, specialized tokenizers for professional domains remain understudied. Our paper offers two main contributions to this area. First, we introduce domain-specific BPE tokenizers for legal, financial, and governmental text. Our kl3m-004-128k-cased tokenizer uses 9-17% fewer tokens than GPT-4o and Llama3 for domain-specific documents, despite having a smaller vocabulary. For specialized terminology, our cased tokenizer is even more efficient, using up to 83% fewer tokens for legal terms and 39% fewer tokens for financial terms. Second, we develop character-level BPE tokenizers (4K, 8K, and 16K vocabulary sizes) for text correction tasks like OCR post-processing. These tokenizers keep consistent token boundaries between error-containing and correct text, making it easier for models to learn correction patterns. These tokenizers help professional applications by fitting more text in context windows, reducing computational needs, and preserving the meaning of domain-specific terms. Our analysis shows these efficiency gains directly benefit the processing of long legal and financial documents. We release all tokenizers and code through GitHub and Hugging Face to support further research in specialized tokenization.
Select or Project? Evaluating Lower-dimensional Vectors for LLM Training Data Explanations
Gradient-based methods for instance-based explanation for large language models (LLMs) are hindered by the immense dimensionality of model gradients. In practice, influence estimation is restricted to a subset of model parameters to make computation tractable, but this subset is often chosen ad hoc and rarely justified by systematic evaluation. This paper investigates if it is better to create low-dimensional representations by selecting a small, architecturally informed subset of model components or by projecting the full gradients into a lower-dimensional space. Using a novel benchmark, we show that a greedily selected subset of components captures the information about training data influence needed for a retrieval task more effectively than either the full gradient or random projection. We further find that this approach is more computationally efficient than random projection, demonstrating that targeted component selection is a practical strategy for making instance-based explanations of large models more computationally feasible.
