new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 3

Attentiveness to Answer Choices Doesn't Always Entail High QA Accuracy

When large language models (LMs) are applied in zero- or few-shot settings to discriminative tasks such as multiple-choice questions, their attentiveness (i.e., probability mass) is spread across many vocabulary tokens that are not valid choices. Such a spread across multiple surface forms with identical meaning is thought to cause an underestimation of a model's true performance, referred to as the "surface form competition" (SFC) hypothesis. This has motivated the introduction of various probability normalization methods. However, many core questions remain unanswered. How do we measure SFC or attentiveness? Are there direct ways of increasing attentiveness on valid choices? Does increasing attentiveness always improve task accuracy? We propose a mathematical formalism for studying this phenomenon, provide a metric for quantifying attentiveness, and identify a simple method for increasing it -- namely, in-context learning with even just one example containing answer choices. The formalism allows us to quantify SFC and bound its impact. Our experiments on three diverse datasets and six LMs reveal several surprising findings. For example, encouraging models to generate a valid answer choice can, in fact, be detrimental to task performance for some LMs, and prior probability normalization methods are less effective (sometimes even detrimental) to instruction-tuned LMs. We conclude with practical insights for effectively using prompted LMs for multiple-choice tasks.

  • 5 authors
·
May 23, 2023

Learning to Break the Loop: Analyzing and Mitigating Repetitions for Neural Text Generation

While large-scale neural language models, such as GPT2 and BART, have achieved impressive results on various text generation tasks, they tend to get stuck in undesirable sentence-level loops with maximization-based decoding algorithms (e.g., greedy search). This phenomenon is counter-intuitive since there are few consecutive sentence-level repetitions in human corpora (e.g., 0.02\% in Wikitext-103). To investigate the underlying reasons for generating consecutive sentence-level repetitions, we study the relationship between the probabilities of the repetitive tokens and their previous repetitions in the context. Through our quantitative experiments, we find that 1) Language models have a preference to repeat the previous sentence; 2) The sentence-level repetitions have a self-reinforcement effect: the more times a sentence is repeated in the context, the higher the probability of continuing to generate that sentence; 3) The sentences with higher initial probabilities usually have a stronger self-reinforcement effect. Motivated by our findings, we propose a simple and effective training method DITTO (PseuDo-RepetITion PenalizaTiOn), where the model learns to penalize probabilities of sentence-level repetitions from pseudo repetitive data. Although our method is motivated by mitigating repetitions, experiments show that DITTO not only mitigates the repetition issue without sacrificing perplexity, but also achieves better generation quality. Extensive experiments on open-ended text generation (Wikitext-103) and text summarization (CNN/DailyMail) demonstrate the generality and effectiveness of our method.

  • 6 authors
·
Jun 6, 2022

Rethinking Repetition Problems of LLMs in Code Generation

With the advent of neural language models, the performance of code generation has been significantly boosted. However, the problem of repetitions during the generation process continues to linger. Previous work has primarily focused on content repetition, which is merely a fraction of the broader repetition problem in code generation. A more prevalent and challenging problem is structural repetition. In structural repetition, the repeated code appears in various patterns but possesses a fixed structure, which can be inherently reflected in grammar. In this paper, we formally define structural repetition and propose an efficient decoding approach called RPG, which stands for Repetition Penalization based on Grammar, to alleviate the repetition problems in code generation for LLMs. Specifically, RPG first leverages grammar rules to identify repetition problems during code generation, and then strategically decays the likelihood of critical tokens that contribute to repetitions, thereby mitigating them in code generation. To facilitate this study, we construct a new dataset CodeRepetEval to comprehensively evaluate approaches for mitigating the repetition problems in code generation. Extensive experimental results demonstrate that RPG substantially outperforms the best-performing baselines on CodeRepetEval dataset as well as HumanEval and MBPP benchmarks, effectively reducing repetitions and enhancing the quality of generated code.

  • 5 authors
·
May 15, 2025

Scaling Laws and Interpretability of Learning from Repeated Data

Recent large language models have been trained on vast datasets, but also often on repeated data, either intentionally for the purpose of upweighting higher quality data, or unintentionally because data deduplication is not perfect and the model is exposed to repeated data at the sentence, paragraph, or document level. Some works have reported substantial negative performance effects of this repeated data. In this paper we attempt to study repeated data systematically and to understand its effects mechanistically. To do this, we train a family of models where most of the data is unique but a small fraction of it is repeated many times. We find a strong double descent phenomenon, in which repeated data can lead test loss to increase midway through training. A predictable range of repetition frequency leads to surprisingly severe degradation in performance. For instance, performance of an 800M parameter model can be degraded to that of a 2x smaller model (400M params) by repeating 0.1% of the data 100 times, despite the other 90% of the training tokens remaining unique. We suspect there is a range in the middle where the data can be memorized and doing so consumes a large fraction of the model's capacity, and this may be where the peak of degradation occurs. Finally, we connect these observations to recent mechanistic interpretability work - attempting to reverse engineer the detailed computations performed by the model - by showing that data repetition disproportionately damages copying and internal structures associated with generalization, such as induction heads, providing a possible mechanism for the shift from generalization to memorization. Taken together, these results provide a hypothesis for why repeating a relatively small fraction of data in large language models could lead to disproportionately large harms to performance.

  • 18 authors
·
May 20, 2022

Protecting Copyrighted Material with Unique Identifiers in Large Language Model Training

A primary concern regarding training large language models (LLMs) is whether they abuse copyrighted online text. With the increasing training data scale and the prevalence of LLMs in daily lives, two problems arise: 1) false positive membership inference results misled by similar examples; 2) membership inference methods are usually too complex for end users to understand and use. To address these issues, we propose an alternative insert-and-detect methodology, advocating that web users and content platforms employ \textit{unique identifiers} for reliable and independent membership inference. Users and platforms can create their identifiers, embed them in copyrighted text, and independently detect them in future LLMs. As an initial demonstration, we introduce \textbf{ghost sentences} and a user-friendly last-k words test, allowing end users to chat with LLMs for membership inference. Ghost sentences consist primarily of unique passphrases of random natural words, which can come with customized elements to bypass possible filter rules. The last-k words test requires a significant repetition time of ghost sentences~(ge10). For cases with fewer repetitions, we designed an extra perplexity test, as LLMs exhibit high perplexity when encountering unnatural passphrases. We also conduct a comprehensive study on the memorization and membership inference of ghost sentences, examining factors such as training data scales, model sizes, repetition times, insertion positions, wordlist of passphrases, alignment, etc. Our study shows the possibility of applying ghost sentences in real scenarios and provides instructions for the potential application.

  • 4 authors
·
Mar 23, 2024

QueryBandits for Hallucination Mitigation: Exploiting Semantic Features for No-Regret Rewriting

Advanced reasoning capabilities in Large Language Models (LLMs) have caused higher hallucination prevalence; yet most mitigation work focuses on after-the-fact filtering rather than shaping the queries that trigger them. We introduce QueryBandits, a bandit framework that designs rewrite strategies to maximize a reward model, that encapsulates hallucination propensity based upon the sensitivities of 17 linguistic features of the input query-and therefore, proactively steer LLMs away from generating hallucinations. Across 13 diverse QA benchmarks and 1,050 lexically perturbed queries per dataset, our top contextual QueryBandit (Thompson Sampling) achieves an 87.5% win rate over a no-rewrite baseline and also outperforms zero-shot static prompting ("paraphrase" or "expand") by 42.6% and 60.3% respectively. Therefore, we empirically substantiate the effectiveness of QueryBandits in mitigating hallucination via the intervention that takes the form of a query rewrite. Interestingly, certain static prompting strategies, which constitute a considerable number of current query rewriting literature, have a higher cumulative regret than the no-rewrite baseline, signifying that static rewrites can worsen hallucination. Moreover, we discover that the converged per-arm regression feature weight vectors substantiate that there is no single rewrite strategy optimal for all queries. In this context, guided rewriting via exploiting semantic features with QueryBandits can induce significant shifts in output behavior through forward-pass mechanisms, bypassing the need for retraining or gradient-based adaptation.

  • 5 authors
·
Aug 21, 2025 2

Continual Vision-and-Language Navigation

In developing Vision-and-Language Navigation (VLN) agents that navigate to a destination using natural language instructions and visual cues, current studies largely assume a train-once-deploy-once strategy. We argue that this kind of strategy is less realistic, as deployed VLN agents are expected to encounter novel environments continuously through their lifetime. To facilitate more realistic setting for VLN agents, we propose Continual Vision-and-Language Navigation (CVLN) paradigm for agents to continually learn and adapt to changing environments. In CVLN, the agents are trained and evaluated incrementally across multiple scene domains (i.e., environments). We present two CVLN learning setups to consider diverse forms of natural language instructions: Initial-instruction based CVLN, focused on navigation via initial-instruction interpretation, and dialogue-based CVLN, designed for navigation through dialogue with other agents. We introduce two simple yet effective baseline methods, tailored to the sequential decision-making needs of CVLN: Perplexity Replay (PerpR) and Episodic Self-Replay (ESR), both employing a rehearsal mechanism. PerpR selects replay episodes based on episode difficulty, while ESR stores and revisits action logits from individual episode steps during training to refine learning. Experimental results indicate that while existing continual learning methods are insufficient for CVLN, PerpR and ESR outperform the comparison methods by effectively utilizing replay memory.

  • 5 authors
·
Mar 22, 2024

Recognition, recall, and retention of few-shot memories in large language models

The training of modern large language models (LLMs) takes place in a regime where most training examples are seen only a few times by the model during the course of training. What does a model remember about such examples seen only a few times during training and how long does that memory persist in the face of continuous training with new examples? Here, we investigate these questions through simple recognition, recall, and retention experiments with LLMs. In recognition experiments, we ask if the model can distinguish the seen example from a novel example; in recall experiments, we ask if the model can correctly recall the seen example when cued by a part of it; and in retention experiments, we periodically probe the model's memory for the original examples as the model is trained continuously with new examples. We find that a single exposure is generally sufficient for a model to achieve near perfect accuracy even in very challenging recognition experiments. We estimate that the recognition performance of even small language models easily exceeds human recognition performance reported in similar experiments with humans (Shepard, 1967). Achieving near perfect recall takes more exposures, but most models can do it in just 3 exposures. The flip side of this remarkable capacity for fast learning is that precise memories are quickly overwritten: recall performance for the original examples drops steeply over the first 10 training updates with new examples, followed by a more gradual decline. Even after 100K updates, however, some of the original examples are still recalled near perfectly. A qualitatively similar retention pattern has been observed in human long-term memory retention studies before (Bahrick, 1984). Finally, recognition is much more robust to interference than recall and memory for natural language sentences is generally superior to memory for stimuli without structure.

  • 1 authors
·
Mar 30, 2023

Do Language Models Know When They're Hallucinating References?

State-of-the-art language models (LMs) are notoriously susceptible to generating hallucinated information. Such inaccurate outputs not only undermine the reliability of these models but also limit their use and raise serious concerns about misinformation and propaganda. In this work, we focus on hallucinated book and article references and present them as the "model organism" of language model hallucination research, due to their frequent and easy-to-discern nature. We posit that if a language model cites a particular reference in its output, then it should ideally possess sufficient information about its authors and content, among other relevant details. Using this basic insight, we illustrate that one can identify hallucinated references without ever consulting any external resources, by asking a set of direct or indirect queries to the language model about the references. These queries can be considered as "consistency checks." Our findings highlight that while LMs, including GPT-4, often produce inconsistent author lists for hallucinated references, they also often accurately recall the authors of real references. In this sense, the LM can be said to "know" when it is hallucinating references. Furthermore, these findings show how hallucinated references can be dissected to shed light on their nature. Replication code and results can be found at https://github.com/microsoft/hallucinated-references.

  • 4 authors
·
May 29, 2023

A Massive Scale Semantic Similarity Dataset of Historical English

A diversity of tasks use language models trained on semantic similarity data. While there are a variety of datasets that capture semantic similarity, they are either constructed from modern web data or are relatively small datasets created in the past decade by human annotators. This study utilizes a novel source, newly digitized articles from off-copyright, local U.S. newspapers, to assemble a massive-scale semantic similarity dataset spanning 70 years from 1920 to 1989 and containing nearly 400M positive semantic similarity pairs. Historically, around half of articles in U.S. local newspapers came from newswires like the Associated Press. While local papers reproduced articles from the newswire, they wrote their own headlines, which form abstractive summaries of the associated articles. We associate articles and their headlines by exploiting document layouts and language understanding. We then use deep neural methods to detect which articles are from the same underlying source, in the presence of substantial noise and abridgement. The headlines of reproduced articles form positive semantic similarity pairs. The resulting publicly available HEADLINES dataset is significantly larger than most existing semantic similarity datasets and covers a much longer span of time. It will facilitate the application of contrastively trained semantic similarity models to a variety of tasks, including the study of semantic change across space and time.

  • 2 authors
·
Jun 30, 2023

SEFE: Superficial and Essential Forgetting Eliminator for Multimodal Continual Instruction Tuning

Multimodal Continual Instruction Tuning (MCIT) aims to enable Multimodal Large Language Models (MLLMs) to incrementally learn new tasks without catastrophic forgetting. In this paper, we explore forgetting in this context, categorizing it into superficial forgetting and essential forgetting. Superficial forgetting refers to cases where the model's knowledge may not be genuinely lost, but its responses to previous tasks deviate from expected formats due to the influence of subsequent tasks' answer styles, making the results unusable. By contrast, essential forgetting refers to situations where the model provides correctly formatted but factually inaccurate answers, indicating a true loss of knowledge. Assessing essential forgetting necessitates addressing superficial forgetting first, as severe superficial forgetting can obscure the model's knowledge state. Hence, we first introduce the Answer Style Diversification (ASD) paradigm, which defines a standardized process for transforming data styles across different tasks, unifying their training sets into similarly diversified styles to prevent superficial forgetting caused by style shifts. Building on this, we propose RegLoRA to mitigate essential forgetting. RegLoRA stabilizes key parameters where prior knowledge is primarily stored by applying regularization, enabling the model to retain existing competencies. Experimental results demonstrate that our overall method, SEFE, achieves state-of-the-art performance.

  • 7 authors
·
May 5, 2025

"Sorry, Come Again?" Prompting -- Enhancing Comprehension and Diminishing Hallucination with [PAUSE]-injected Optimal Paraphrasing

Hallucination has emerged as the most vulnerable aspect of contemporary Large Language Models (LLMs). In this paper, we introduce the Sorry, Come Again (SCA) prompting, aimed to avoid LLM hallucinations by enhancing comprehension through: (i) optimal paraphrasing and (ii) injecting [PAUSE] tokens to delay LLM generation. First, we provide an in-depth analysis of linguistic nuances: formality, readability, and concreteness of prompts for 21 LLMs, and elucidate how these nuances contribute to hallucinated generation. Prompts with lower readability, formality, or concreteness pose comprehension challenges for LLMs, similar to those faced by humans. In such scenarios, an LLM tends to speculate and generate content based on its imagination (associative memory) to fill these information gaps. Although these speculations may occasionally align with factual information, their accuracy is not assured, often resulting in hallucination. Recent studies reveal that an LLM often neglects the middle sections of extended prompts, a phenomenon termed as lost in the middle. While a specific paraphrase may suit one LLM, the same paraphrased version may elicit a different response from another LLM. Therefore, we propose an optimal paraphrasing technique to identify the most comprehensible paraphrase of a given prompt, evaluated using Integrated Gradient (and its variations) to guarantee that the LLM accurately processes all words. While reading lengthy sentences, humans often pause at various points to better comprehend the meaning read thus far. We have fine-tuned an LLM with injected [PAUSE] tokens, allowing the LLM to pause while reading lengthier prompts. This has brought several key contributions: (i) determining the optimal position to inject [PAUSE], (ii) determining the number of [PAUSE] tokens to be inserted, and (iii) introducing reverse proxy tuning to fine-tune the LLM for [PAUSE] insertion.

  • 7 authors
·
Mar 27, 2024

Online Writer Retrieval with Chinese Handwritten Phrases: A Synergistic Temporal-Frequency Representation Learning Approach

Currently, the prevalence of online handwriting has spurred a critical need for effective retrieval systems to accurately search relevant handwriting instances from specific writers, known as online writer retrieval. Despite the growing demand, this field suffers from a scarcity of well-established methodologies and public large-scale datasets. This paper tackles these challenges with a focus on Chinese handwritten phrases. First, we propose DOLPHIN, a novel retrieval model designed to enhance handwriting representations through synergistic temporal-frequency analysis. For frequency feature learning, we propose the HFGA block, which performs gated cross-attention between the vanilla temporal handwriting sequence and its high-frequency sub-bands to amplify salient writing details. For temporal feature learning, we propose the CAIR block, tailored to promote channel interaction and reduce channel redundancy. Second, to address data deficit, we introduce OLIWER, a large-scale online writer retrieval dataset encompassing over 670,000 Chinese handwritten phrases from 1,731 individuals. Through extensive evaluations, we demonstrate the superior performance of DOLPHIN over existing methods. In addition, we explore cross-domain writer retrieval and reveal the pivotal role of increasing feature alignment in bridging the distributional gap between different handwriting data. Our findings emphasize the significance of point sampling frequency and pressure features in improving handwriting representation quality and retrieval performance. Code and dataset are available at https://github.com/SCUT-DLVCLab/DOLPHIN.

  • 2 authors
·
Dec 16, 2024

Revisit Anything: Visual Place Recognition via Image Segment Retrieval

Accurately recognizing a revisited place is crucial for embodied agents to localize and navigate. This requires visual representations to be distinct, despite strong variations in camera viewpoint and scene appearance. Existing visual place recognition pipelines encode the "whole" image and search for matches. This poses a fundamental challenge in matching two images of the same place captured from different camera viewpoints: "the similarity of what overlaps can be dominated by the dissimilarity of what does not overlap". We address this by encoding and searching for "image segments" instead of the whole images. We propose to use open-set image segmentation to decompose an image into `meaningful' entities (i.e., things and stuff). This enables us to create a novel image representation as a collection of multiple overlapping subgraphs connecting a segment with its neighboring segments, dubbed SuperSegment. Furthermore, to efficiently encode these SuperSegments into compact vector representations, we propose a novel factorized representation of feature aggregation. We show that retrieving these partial representations leads to significantly higher recognition recall than the typical whole image based retrieval. Our segments-based approach, dubbed SegVLAD, sets a new state-of-the-art in place recognition on a diverse selection of benchmark datasets, while being applicable to both generic and task-specialized image encoders. Finally, we demonstrate the potential of our method to ``revisit anything'' by evaluating our method on an object instance retrieval task, which bridges the two disparate areas of research: visual place recognition and object-goal navigation, through their common aim of recognizing goal objects specific to a place. Source code: https://github.com/AnyLoc/Revisit-Anything.

  • 5 authors
·
Sep 26, 2024

One vs. Many: Comprehending Accurate Information from Multiple Erroneous and Inconsistent AI Generations

As Large Language Models (LLMs) are nondeterministic, the same input can generate different outputs, some of which may be incorrect or hallucinated. If run again, the LLM may correct itself and produce the correct answer. Unfortunately, most LLM-powered systems resort to single results which, correct or not, users accept. Having the LLM produce multiple outputs may help identify disagreements or alternatives. However, it is not obvious how the user will interpret conflicts or inconsistencies. To this end, we investigate how users perceive the AI model and comprehend the generated information when they receive multiple, potentially inconsistent, outputs. Through a preliminary study, we identified five types of output inconsistencies. Based on these categories, we conducted a study (N=252) in which participants were given one or more LLM-generated passages to an information-seeking question. We found that inconsistency within multiple LLM-generated outputs lowered the participants' perceived AI capacity, while also increasing their comprehension of the given information. Specifically, we observed that this positive effect of inconsistencies was most significant for participants who read two passages, compared to those who read three. Based on these findings, we present design implications that, instead of regarding LLM output inconsistencies as a drawback, we can reveal the potential inconsistencies to transparently indicate the limitations of these models and promote critical LLM usage.

  • 7 authors
·
May 9, 2024

Pandora3D: A Comprehensive Framework for High-Quality 3D Shape and Texture Generation

This report presents a comprehensive framework for generating high-quality 3D shapes and textures from diverse input prompts, including single images, multi-view images, and text descriptions. The framework consists of 3D shape generation and texture generation. (1). The 3D shape generation pipeline employs a Variational Autoencoder (VAE) to encode implicit 3D geometries into a latent space and a diffusion network to generate latents conditioned on input prompts, with modifications to enhance model capacity. An alternative Artist-Created Mesh (AM) generation approach is also explored, yielding promising results for simpler geometries. (2). Texture generation involves a multi-stage process starting with frontal images generation followed by multi-view images generation, RGB-to-PBR texture conversion, and high-resolution multi-view texture refinement. A consistency scheduler is plugged into every stage, to enforce pixel-wise consistency among multi-view textures during inference, ensuring seamless integration. The pipeline demonstrates effective handling of diverse input formats, leveraging advanced neural architectures and novel methodologies to produce high-quality 3D content. This report details the system architecture, experimental results, and potential future directions to improve and expand the framework. The source code and pretrained weights are released at: https://github.com/Tencent/Tencent-XR-3DGen.

  • 10 authors
·
Feb 19, 2025 2

DreamPolish: Domain Score Distillation With Progressive Geometry Generation

We introduce DreamPolish, a text-to-3D generation model that excels in producing refined geometry and high-quality textures. In the geometry construction phase, our approach leverages multiple neural representations to enhance the stability of the synthesis process. Instead of relying solely on a view-conditioned diffusion prior in the novel sampled views, which often leads to undesired artifacts in the geometric surface, we incorporate an additional normal estimator to polish the geometry details, conditioned on viewpoints with varying field-of-views. We propose to add a surface polishing stage with only a few training steps, which can effectively refine the artifacts attributed to limited guidance from previous stages and produce 3D objects with more desirable geometry. The key topic of texture generation using pretrained text-to-image models is to find a suitable domain in the vast latent distribution of these models that contains photorealistic and consistent renderings. In the texture generation phase, we introduce a novel score distillation objective, namely domain score distillation (DSD), to guide neural representations toward such a domain. We draw inspiration from the classifier-free guidance (CFG) in textconditioned image generation tasks and show that CFG and variational distribution guidance represent distinct aspects in gradient guidance and are both imperative domains for the enhancement of texture quality. Extensive experiments show our proposed model can produce 3D assets with polished surfaces and photorealistic textures, outperforming existing state-of-the-art methods.

  • 8 authors
·
Nov 3, 2024 2

Latent Compass: Creation by Navigation

In Marius von Senden's Space and Sight, a newly sighted blind patient describes the experience of a corner as lemon-like, because corners "prick" sight like lemons prick the tongue. Prickliness, here, is a dimension in the feature space of sensory experience, an effect of the perceived on the perceiver that arises where the two interact. In the account of the newly sighted, an effect familiar from one interaction translates to a novel context. Perception serves as the vehicle for generalization, in that an effect shared across different experiences produces a concrete abstraction grounded in those experiences. Cezanne and the post-impressionists, fluent in the language of experience translation, realized that the way to paint a concrete form that best reflected reality was to paint not what they saw, but what it was like to see. We envision a future of creation using AI where what it is like to see is replicable, transferrable, manipulable - part of the artist's palette that is both grounded in a particular context, and generalizable beyond it. An active line of research maps human-interpretable features onto directions in GAN latent space. Supervised and self-supervised approaches that search for anticipated directions or use off-the-shelf classifiers to drive image manipulation in embedding space are limited in the variety of features they can uncover. Unsupervised approaches that discover useful new directions show that the space of perceptually meaningful directions is nowhere close to being fully mapped. As this space is broad and full of creative potential, we want tools for direction discovery that capture the richness and generalizability of human perception. Our approach puts creators in the discovery loop during real-time tool use, in order to identify directions that are perceptually meaningful to them, and generate interpretable image translations along those directions.

  • 3 authors
·
Dec 19, 2020

A-STAR: Test-time Attention Segregation and Retention for Text-to-image Synthesis

While recent developments in text-to-image generative models have led to a suite of high-performing methods capable of producing creative imagery from free-form text, there are several limitations. By analyzing the cross-attention representations of these models, we notice two key issues. First, for text prompts that contain multiple concepts, there is a significant amount of pixel-space overlap (i.e., same spatial regions) among pairs of different concepts. This eventually leads to the model being unable to distinguish between the two concepts and one of them being ignored in the final generation. Next, while these models attempt to capture all such concepts during the beginning of denoising (e.g., first few steps) as evidenced by cross-attention maps, this knowledge is not retained by the end of denoising (e.g., last few steps). Such loss of knowledge eventually leads to inaccurate generation outputs. To address these issues, our key innovations include two test-time attention-based loss functions that substantially improve the performance of pretrained baseline text-to-image diffusion models. First, our attention segregation loss reduces the cross-attention overlap between attention maps of different concepts in the text prompt, thereby reducing the confusion/conflict among various concepts and the eventual capture of all concepts in the generated output. Next, our attention retention loss explicitly forces text-to-image diffusion models to retain cross-attention information for all concepts across all denoising time steps, thereby leading to reduced information loss and the preservation of all concepts in the generated output.

  • 6 authors
·
Jun 26, 2023

Continual Vision-Language Representation Learning with Off-Diagonal Information

Large-scale multi-modal contrastive learning frameworks like CLIP typically require a large amount of image-text samples for training. However, these samples are always collected continuously in real scenarios. This paper discusses the feasibility of continual CLIP training using streaming data. Unlike continual learning based on self-supervised learning methods for pure images, which is empirically robust against catastrophic forgetting, CLIP's performance degeneration in the continual setting is significant and non-neglectable. By analyzing the changes in the model's representation space during continual CLIP training from a spatial geometry perspective, we explore and summarize these spatial variations as Spatial Disorder (SD), which can be divided into Intra-modal Rotation and Inter-modal Deviation. Moreover, we empirically and theoretically demonstrate how SD leads to a performance decline for CLIP on cross-modal retrieval tasks. To alleviate SD, we propose a new continual vision-language representation learning framework Mod-X: Maintain off-diagonal information-matriX. By selectively aligning the off-diagonal information distribution of contrastive matrices, the Mod-X improves the capability of the multi-modal model by maintaining the multi-modal representation space alignment on the old data domain during continuously fitting the new training data domain. Experiments on commonly used datasets with different scales and scopes have demonstrated the effectiveness of our method.

  • 5 authors
·
May 11, 2023

Copyright Traps for Large Language Models

Questions of fair use of copyright-protected content to train Large Language Models (LLMs) are being very actively debated. Document-level inference has been proposed as a new task: inferring from black-box access to the trained model whether a piece of content has been seen during training. SOTA methods however rely on naturally occurring memorization of (part of) the content. While very effective against models that memorize a lot, we hypothesize--and later confirm--that they will not work against models that do not naturally memorize, e.g. medium-size 1B models. We here propose to use copyright traps, the inclusion of fictitious entries in original content, to detect the use of copyrighted materials in LLMs with a focus on models where memorization does not naturally occur. We carefully design an experimental setup, randomly inserting traps into original content (books) and train a 1.3B LLM. We first validate that the use of content in our target model would be undetectable using existing methods. We then show, contrary to intuition, that even medium-length trap sentences repeated a significant number of times (100) are not detectable using existing methods. However, we show that longer sequences repeated a large number of times can be reliably detected (AUC=0.75) and used as copyright traps. We further improve these results by studying how the number of times a sequence is seen improves detectability, how sequences with higher perplexity tend to be memorized more, and how taking context into account further improves detectability.

  • 4 authors
·
Feb 14, 2024

GeRe: Towards Efficient Anti-Forgetting in Continual Learning of LLM via General Samples Replay

The continual learning capability of large language models (LLMs) is crucial for advancing artificial general intelligence. However, continual fine-tuning LLMs across various domains often suffers from catastrophic forgetting, characterized by: 1) significant forgetting of their general capabilities, and 2) sharp performance declines in previously learned tasks. To simultaneously address both issues in a simple yet stable manner, we propose General Sample Replay (GeRe), a framework that use usual pretraining texts for efficient anti-forgetting. Beyond revisiting the most prevalent replay-based practices under GeRe, we further leverage neural states to introduce a enhanced activation states constrained optimization method using threshold-based margin (TM) loss, which maintains activation state consistency during replay learning. We are the first to validate that a small, fixed set of pre-collected general replay samples is sufficient to resolve both concerns--retaining general capabilities while promoting overall performance across sequential tasks. Indeed, the former can inherently facilitate the latter. Through controlled experiments, we systematically compare TM with different replay strategies under the GeRe framework, including vanilla label fitting, logit imitation via KL divergence and feature imitation via L1/L2 losses. Results demonstrate that TM consistently improves performance and exhibits better robustness. Our work paves the way for efficient replay of LLMs for the future. Our code and data are available at https://github.com/Qznan/GeRe.

  • 7 authors
·
Aug 6, 2025 2

Recovering Partially Corrupted Major Objects through Tri-modality Based Image Completion

Diffusion models have become widely adopted in image completion tasks, with text prompts commonly employed to ensure semantic coherence by providing high-level guidance. However, a persistent challenge arises when an object is partially obscured in the damaged region, yet its remaining parts are still visible in the background. While text prompts offer semantic direction, they often fail to precisely recover fine-grained structural details, such as the object's overall posture, ensuring alignment with the visible object information in the background. This limitation stems from the inability of text prompts to provide pixel-level specificity. To address this, we propose supplementing text-based guidance with a novel visual aid: a casual sketch, which can be roughly drawn by anyone based on visible object parts. This sketch supplies critical structural cues, enabling the generative model to produce an object structure that seamlessly integrates with the existing background. We introduce the Visual Sketch Self-Aware (VSSA) model, which integrates the casual sketch into each iterative step of the diffusion process, offering distinct advantages for partially corrupted scenarios. By blending sketch-derived features with those of the corrupted image, and leveraging text prompt guidance, the VSSA assists the diffusion model in generating images that preserve both the intended object semantics and structural consistency across the restored objects and original regions. To support this research, we created two datasets, CUB-sketch and MSCOCO-sketch, each combining images, sketches, and text. Extensive qualitative and quantitative experiments demonstrate that our approach outperforms several state-of-the-art methods.

  • 3 authors
·
Mar 10, 2025

Internal Consistency and Self-Feedback in Large Language Models: A Survey

Large language models (LLMs) are expected to respond accurately but often exhibit deficient reasoning or generate hallucinatory content. To address these, studies prefixed with ``Self-'' such as Self-Consistency, Self-Improve, and Self-Refine have been initiated. They share a commonality: involving LLMs evaluating and updating itself to mitigate the issues. Nonetheless, these efforts lack a unified perspective on summarization, as existing surveys predominantly focus on categorization without examining the motivations behind these works. In this paper, we summarize a theoretical framework, termed Internal Consistency, which offers unified explanations for phenomena such as the lack of reasoning and the presence of hallucinations. Internal Consistency assesses the coherence among LLMs' latent layer, decoding layer, and response layer based on sampling methodologies. Expanding upon the Internal Consistency framework, we introduce a streamlined yet effective theoretical framework capable of mining Internal Consistency, named Self-Feedback. The Self-Feedback framework consists of two modules: Self-Evaluation and Self-Update. This framework has been employed in numerous studies. We systematically classify these studies by tasks and lines of work; summarize relevant evaluation methods and benchmarks; and delve into the concern, ``Does Self-Feedback Really Work?'' We propose several critical viewpoints, including the ``Hourglass Evolution of Internal Consistency'', ``Consistency Is (Almost) Correctness'' hypothesis, and ``The Paradox of Latent and Explicit Reasoning''. Furthermore, we outline promising directions for future research. We have open-sourced the experimental code, reference list, and statistical data, available at https://github.com/IAAR-Shanghai/ICSFSurvey.

  • 9 authors
·
Jul 19, 2024 9

FreBIS: Frequency-Based Stratification for Neural Implicit Surface Representations

Neural implicit surface representation techniques are in high demand for advancing technologies in augmented reality/virtual reality, digital twins, autonomous navigation, and many other fields. With their ability to model object surfaces in a scene as a continuous function, such techniques have made remarkable strides recently, especially over classical 3D surface reconstruction methods, such as those that use voxels or point clouds. However, these methods struggle with scenes that have varied and complex surfaces principally because they model any given scene with a single encoder network that is tasked to capture all of low through high-surface frequency information in the scene simultaneously. In this work, we propose a novel, neural implicit surface representation approach called FreBIS to overcome this challenge. FreBIS works by stratifying the scene based on the frequency of surfaces into multiple frequency levels, with each level (or a group of levels) encoded by a dedicated encoder. Moreover, FreBIS encourages these encoders to capture complementary information by promoting mutual dissimilarity of the encoded features via a novel, redundancy-aware weighting module. Empirical evaluations on the challenging BlendedMVS dataset indicate that replacing the standard encoder in an off-the-shelf neural surface reconstruction method with our frequency-stratified encoders yields significant improvements. These enhancements are evident both in the quality of the reconstructed 3D surfaces and in the fidelity of their renderings from any viewpoint.

  • 5 authors
·
Apr 28, 2025

Alleviating Hallucination in Large Vision-Language Models with Active Retrieval Augmentation

Despite the remarkable ability of large vision-language models (LVLMs) in image comprehension, these models frequently generate plausible yet factually incorrect responses, a phenomenon known as hallucination.Recently, in large language models (LLMs), augmenting LLMs by retrieving information from external knowledge resources has been proven as a promising solution to mitigate hallucinations.However, the retrieval augmentation in LVLM significantly lags behind the widespread applications of LVLM. Moreover, when transferred to augmenting LVLMs, sometimes the hallucination degree of the model is even exacerbated.Motivated by the research gap and counter-intuitive phenomenon, we introduce a novel framework, the Active Retrieval-Augmented large vision-language model (ARA), specifically designed to address hallucinations by incorporating three critical dimensions: (i) dissecting the retrieval targets based on the inherent hierarchical structures of images. (ii) pinpointing the most effective retrieval methods and filtering out the reliable retrieval results. (iii) timing the retrieval process to coincide with episodes of low certainty, while circumventing unnecessary retrieval during periods of high certainty. To assess the capability of our proposed ARA model in reducing hallucination, we employ three widely used LVLM models (LLaVA-1.5, Qwen-VL, and mPLUG-Owl2) across four benchmarks. Our empirical observations suggest that by utilizing fitting retrieval mechanisms and timing the retrieval judiciously, we can effectively mitigate the hallucination problem. We hope that this study can provide deeper insights into how to adapt the retrieval augmentation to LVLMs for reducing hallucinations with more effective retrieval and minimal retrieval occurrences.

  • 5 authors
·
Aug 1, 2024

Taming Modality Entanglement in Continual Audio-Visual Segmentation

Recently, significant progress has been made in multi-modal continual learning, aiming to learn new tasks sequentially in multi-modal settings while preserving performance on previously learned ones. However, existing methods mainly focus on coarse-grained tasks, with limitations in addressing modality entanglement in fine-grained continual learning settings. To bridge this gap, we introduce a novel Continual Audio-Visual Segmentation (CAVS) task, aiming to continuously segment new classes guided by audio. Through comprehensive analysis, two critical challenges are identified: 1) multi-modal semantic drift, where a sounding objects is labeled as background in sequential tasks; 2) co-occurrence confusion, where frequent co-occurring classes tend to be confused. In this work, a Collision-based Multi-modal Rehearsal (CMR) framework is designed to address these challenges. Specifically, for multi-modal semantic drift, a Multi-modal Sample Selection (MSS) strategy is proposed to select samples with high modal consistency for rehearsal. Meanwhile, for co-occurence confusion, a Collision-based Sample Rehearsal (CSR) mechanism is designed, allowing for the increase of rehearsal sample frequency of those confusable classes during training process. Moreover, we construct three audio-visual incremental scenarios to verify effectiveness of our method. Comprehensive experiments demonstrate that our method significantly outperforms single-modal continual learning methods.

  • 8 authors
·
Oct 20, 2025 1

Read, Revise, Repeat: A System Demonstration for Human-in-the-loop Iterative Text Revision

Revision is an essential part of the human writing process. It tends to be strategic, adaptive, and, more importantly, iterative in nature. Despite the success of large language models on text revision tasks, they are limited to non-iterative, one-shot revisions. Examining and evaluating the capability of large language models for making continuous revisions and collaborating with human writers is a critical step towards building effective writing assistants. In this work, we present a human-in-the-loop iterative text revision system, Read, Revise, Repeat (R3), which aims at achieving high quality text revisions with minimal human efforts by reading model-generated revisions and user feedbacks, revising documents, and repeating human-machine interactions. In R3, a text revision model provides text editing suggestions for human writers, who can accept or reject the suggested edits. The accepted edits are then incorporated into the model for the next iteration of document revision. Writers can therefore revise documents iteratively by interacting with the system and simply accepting/rejecting its suggested edits until the text revision model stops making further revisions or reaches a predefined maximum number of revisions. Empirical experiments show that R3 can generate revisions with comparable acceptance rate to human writers at early revision depths, and the human-machine interaction can get higher quality revisions with fewer iterations and edits. The collected human-model interaction dataset and system code are available at https://github.com/vipulraheja/IteraTeR. Our system demonstration is available at https://youtu.be/lK08tIpEoaE.

  • 5 authors
·
Apr 7, 2022

Are Large Language Models Good at Utility Judgments?

Retrieval-augmented generation (RAG) is considered to be a promising approach to alleviate the hallucination issue of large language models (LLMs), and it has received widespread attention from researchers recently. Due to the limitation in the semantic understanding of retrieval models, the success of RAG heavily lies on the ability of LLMs to identify passages with utility. Recent efforts have explored the ability of LLMs to assess the relevance of passages in retrieval, but there has been limited work on evaluating the utility of passages in supporting question answering. In this work, we conduct a comprehensive study about the capabilities of LLMs in utility evaluation for open-domain QA. Specifically, we introduce a benchmarking procedure and collection of candidate passages with different characteristics, facilitating a series of experiments with five representative LLMs. Our experiments reveal that: (i) well-instructed LLMs can distinguish between relevance and utility, and that LLMs are highly receptive to newly generated counterfactual passages. Moreover, (ii) we scrutinize key factors that affect utility judgments in the instruction design. And finally, (iii) to verify the efficacy of utility judgments in practical retrieval augmentation applications, we delve into LLMs' QA capabilities using the evidence judged with utility and direct dense retrieval results. (iv) We propose a k-sampling, listwise approach to reduce the dependency of LLMs on the sequence of input passages, thereby facilitating subsequent answer generation. We believe that the way we formalize and study the problem along with our findings contributes to a critical assessment of retrieval-augmented LLMs. Our code and benchmark can be found at https://github.com/ict-bigdatalab/utility_judgments.

  • 6 authors
·
Mar 28, 2024

Surface Representation for Point Clouds

Most prior work represents the shapes of point clouds by coordinates. However, it is insufficient to describe the local geometry directly. In this paper, we present RepSurf (representative surfaces), a novel representation of point clouds to explicitly depict the very local structure. We explore two variants of RepSurf, Triangular RepSurf and Umbrella RepSurf inspired by triangle meshes and umbrella curvature in computer graphics. We compute the representations of RepSurf by predefined geometric priors after surface reconstruction. RepSurf can be a plug-and-play module for most point cloud models thanks to its free collaboration with irregular points. Based on a simple baseline of PointNet++ (SSG version), Umbrella RepSurf surpasses the previous state-of-the-art by a large margin for classification, segmentation and detection on various benchmarks in terms of performance and efficiency. With an increase of around 0.008M number of parameters, 0.04G FLOPs, and 1.12ms inference time, our method achieves 94.7\% (+0.5\%) on ModelNet40, and 84.6\% (+1.8\%) on ScanObjectNN for classification, while 74.3\% (+0.8\%) mIoU on S3DIS 6-fold, and 70.0\% (+1.6\%) mIoU on ScanNet for segmentation. For detection, previous state-of-the-art detector with our RepSurf obtains 71.2\% (+2.1\%) mAP_{25}, 54.8\% (+2.0\%) mAP_{50} on ScanNetV2, and 64.9\% (+1.9\%) mAP_{25}, 47.7\% (+2.5\%) mAP_{50} on SUN RGB-D. Our lightweight Triangular RepSurf performs its excellence on these benchmarks as well. The code is publicly available at https://github.com/hancyran/RepSurf.

  • 3 authors
·
May 11, 2022

Overview of the TREC 2023 deep learning track

This is the fifth year of the TREC Deep Learning track. As in previous years, we leverage the MS MARCO datasets that made hundreds of thousands of human-annotated training labels available for both passage and document ranking tasks. We mostly repeated last year's design, to get another matching test set, based on the larger, cleaner, less-biased v2 passage and document set, with passage ranking as primary and document ranking as a secondary task (using labels inferred from passage). As we did last year, we sample from MS MARCO queries that were completely held out, unused in corpus construction, unlike the test queries in the first three years. This approach yields a more difficult test with more headroom for improvement. Alongside the usual MS MARCO (human) queries from MS MARCO, this year we generated synthetic queries using a fine-tuned T5 model and using a GPT-4 prompt. The new headline result this year is that runs using Large Language Model (LLM) prompting in some way outperformed runs that use the "nnlm" approach, which was the best approach in the previous four years. Since this is the last year of the track, future iterations of prompt-based ranking can happen in other tracks. Human relevance assessments were applied to all query types, not just human MS MARCO queries. Evaluation using synthetic queries gave similar results to human queries, with system ordering agreement of τ=0.8487. However, human effort was needed to select a subset of the synthetic queries that were usable. We did not see clear evidence of bias, where runs using GPT-4 were favored when evaluated using synthetic GPT-4 queries, or where runs using T5 were favored when evaluated on synthetic T5 queries.

  • 8 authors
·
Jul 10, 2025

Benchmarking Online Sequence-to-Sequence and Character-based Handwriting Recognition from IMU-Enhanced Pens

Purpose. Handwriting is one of the most frequently occurring patterns in everyday life and with it come challenging applications such as handwriting recognition (HWR), writer identification, and signature verification. In contrast to offline HWR that only uses spatial information (i.e., images), online HWR (OnHWR) uses richer spatio-temporal information (i.e., trajectory data or inertial data). While there exist many offline HWR datasets, there is only little data available for the development of OnHWR methods on paper as it requires hardware-integrated pens. Methods. This paper presents data and benchmark models for real-time sequence-to-sequence (seq2seq) learning and single character-based recognition. Our data is recorded by a sensor-enhanced ballpoint pen, yielding sensor data streams from triaxial accelerometers, a gyroscope, a magnetometer and a force sensor at 100 Hz. We propose a variety of datasets including equations and words for both the writer-dependent and writer-independent tasks. Our datasets allow a comparison between classical OnHWR on tablets and on paper with sensor-enhanced pens. We provide an evaluation benchmark for seq2seq and single character-based HWR using recurrent and temporal convolutional networks and Transformers combined with a connectionist temporal classification (CTC) loss and cross-entropy (CE) losses. Results. Our convolutional network combined with BiLSTMs outperforms Transformer-based architectures, is on par with InceptionTime for sequence-based classification tasks, and yields better results compared to 28 state-of-the-art techniques. Time-series augmentation methods improve the sequence-based task, and we show that CE variants can improve the single classification task.

  • 7 authors
·
Feb 14, 2022

Fine-Grained Detection of Context-Grounded Hallucinations Using LLMs

Context-grounded hallucinations are cases where model outputs contain information not verifiable against the source text. We study the applicability of LLMs for localizing such hallucinations, as a more practical alternative to existing complex evaluation pipelines. In the absence of established benchmarks for meta-evaluation of hallucinations localization, we construct one tailored to LLMs, involving a challenging human annotation of over 1,000 examples. We complement the benchmark with an LLM-based evaluation protocol, verifying its quality in a human evaluation. Since existing representations of hallucinations limit the types of errors that can be expressed, we propose a new representation based on free-form textual descriptions, capturing the full range of possible errors. We conduct a comprehensive study, evaluating four large-scale LLMs, which highlights the benchmark's difficulty, as the best model achieves an F1 score of only 0.67. Through careful analysis, we offer insights into optimal prompting strategies for the task and identify the main factors that make it challenging for LLMs: (1) a tendency to incorrectly flag missing details as inconsistent, despite being instructed to check only facts in the output; and (2) difficulty with outputs containing factually correct information absent from the source - and thus not verifiable - due to alignment with the model's parametric knowledge.

Robot Learning with Sparsity and Scarcity

Unlike in language or vision, one of the fundamental challenges in robot learning is the lack of access to vast data resources. We can further break down the problem into (1) data sparsity from the angle of data representation and (2) data scarcity from the angle of data quantity. In this thesis, I will discuss selected works on two domains: (1) tactile sensing and (2) rehabilitation robots, which are exemplars of data sparsity and scarcity, respectively. Tactile sensing is an essential modality for robotics, but tactile data are often sparse, and for each interaction with the physical world, tactile sensors can only obtain information about the local area of contact. I will discuss my work on learning vision-free tactile-only exploration and manipulation policies through model-free reinforcement learning to make efficient use of sparse tactile information. On the other hand, rehabilitation robots are an example of data scarcity to the extreme due to the significant challenge of collecting biosignals from disabled-bodied subjects at scale for training. I will discuss my work in collaboration with the medical school and clinicians on intent inferral for stroke survivors, where a hand orthosis developed in our lab collects a set of biosignals from the patient and uses them to infer the activity that the patient intends to perform, so the orthosis can provide the right type of physical assistance at the right moment. My work develops machine learning algorithms that enable intent inferral with minimal data, including semi-supervised, meta-learning, and generative AI methods.

  • 1 authors
·
Sep 20, 2025

Semantic Grounding Index: Geometric Bounds on Context Engagement in RAG Systems

When retrieval-augmented generation (RAG) systems hallucinate, what geometric trace does this leave in embedding space? We introduce the Semantic Grounding Index (SGI), defined as the ratio of angular distances from the response to the question versus the context on the unit hypersphere S^{d-1}.Our central finding is semantic laziness: hallucinated responses remain angularly proximate to questions rather than departing toward retrieved contexts. On HaluEval (n=5,000), we observe large effect sizes (Cohen's d ranging from 0.92 to 1.28) across five embedding models with mean cross-model correlation r=0.85. Crucially, we derive from the spherical triangle inequality that SGI's discriminative power should increase with question-context angular separation θ(q,c)-a theoretical prediction confirmed empirically: effect size rises monotonically from d=0.61 -low θ(q,c), to d=1.27 -high θ(q,c), with AUC improving from 0.72 to 0.83. Subgroup analysis reveals that SGI excels on long responses (d=2.05) and short questions (d=1.22), while remaining robust across context lengths. Calibration analysis yields ECE=0.10, indicating SGI scores can serve as probability estimates, not merely rankings. A critical negative result on TruthfulQA (AUC=0.478) establishes that angular geometry measures topical engagement rather than factual accuracy. SGI provides computationally efficient, theoretically grounded infrastructure for identifying responses that warrant verification in production RAG deployments.

  • 1 authors
·
Dec 15, 2025

Towards Visual Grounding: A Survey

Visual Grounding is also known as Referring Expression Comprehension and Phrase Grounding. It involves localizing a natural number of specific regions within an image based on a given textual description. The objective of this task is to emulate the prevalent referential relationships in social conversations, equipping machines with human-like multimodal comprehension capabilities. Consequently, it has extensive applications in various domains. However, since 2021, visual grounding has witnessed significant advancements, with emerging new concepts such as grounded pre-training, grounding multimodal LLMs, generalized visual grounding, and giga-pixel grounding, which have brought numerous new challenges. In this survey, we initially examine the developmental history of visual grounding and provide an overview of essential background knowledge. We systematically track and summarize the advancements and meticulously organize the various settings in visual grounding, thereby establishing precise definitions of these settings to standardize future research and ensure a fair comparison. Additionally, we delve into several advanced topics and highlight numerous applications of visual grounding. Finally, we outline the challenges confronting visual grounding and propose valuable directions for future research, which may serve as inspiration for subsequent researchers. By extracting common technical details, this survey encompasses the representative works in each subtopic over the past decade. To the best, this paper presents the most comprehensive overview currently available in the field of grounding. This survey is designed to be suitable for both beginners and experienced researchers, serving as an invaluable resource for understanding key concepts and tracking the latest research developments. We keep tracing related works at https://github.com/linhuixiao/Awesome-Visual-Grounding.

  • 5 authors
·
Dec 28, 2024

Symbolic Replay: Scene Graph as Prompt for Continual Learning on VQA Task

VQA is an ambitious task aiming to answer any image-related question. However, in reality, it is hard to build such a system once for all since the needs of users are continuously updated, and the system has to implement new functions. Thus, Continual Learning (CL) ability is a must in developing advanced VQA systems. Recently, a pioneer work split a VQA dataset into disjoint answer sets to study this topic. However, CL on VQA involves not only the expansion of label sets (new Answer sets). It is crucial to study how to answer questions when deploying VQA systems to new environments (new Visual scenes) and how to answer questions requiring new functions (new Question types). Thus, we propose CLOVE, a benchmark for Continual Learning On Visual quEstion answering, which contains scene- and function-incremental settings for the two aforementioned CL scenarios. In terms of methodology, the main difference between CL on VQA and classification is that the former additionally involves expanding and preventing forgetting of reasoning mechanisms, while the latter focusing on class representation. Thus, we propose a real-data-free replay-based method tailored for CL on VQA, named Scene Graph as Prompt for Symbolic Replay. Using a piece of scene graph as a prompt, it replays pseudo scene graphs to represent the past images, along with correlated QA pairs. A unified VQA model is also proposed to utilize the current and replayed data to enhance its QA ability. Finally, experimental results reveal challenges in CLOVE and demonstrate the effectiveness of our method. The dataset and code will be available at https://github.com/showlab/CLVQA.

  • 7 authors
·
Aug 24, 2022

Visual Prompting with Iterative Refinement for Design Critique Generation

Feedback is crucial for every design process, such as user interface (UI) design, and automating design critiques can significantly improve the efficiency of the design workflow. Although existing multimodal large language models (LLMs) excel in many tasks, they often struggle with generating high-quality design critiques -- a complex task that requires producing detailed design comments that are visually grounded in a given design's image. Building on recent advancements in iterative refinement of text output and visual prompting methods, we propose an iterative visual prompting approach for UI critique that takes an input UI screenshot and design guidelines and generates a list of design comments, along with corresponding bounding boxes that map each comment to a specific region in the screenshot. The entire process is driven completely by LLMs, which iteratively refine both the text output and bounding boxes using few-shot samples tailored for each step. We evaluated our approach using Gemini-1.5-pro and GPT-4o, and found that human experts generally preferred the design critiques generated by our pipeline over those by the baseline, with the pipeline reducing the gap from human performance by 50% for one rating metric. To assess the generalizability of our approach to other multimodal tasks, we applied our pipeline to open-vocabulary object and attribute detection, and experiments showed that our method also outperformed the baseline.

  • 4 authors
·
Dec 21, 2024

Long-Term Ad Memorability: Understanding and Generating Memorable Ads

Marketers spend billions of dollars on advertisements, but to what end? At purchase time, if customers cannot recognize the brand for which they saw an ad, the money spent on the ad is essentially wasted. Despite its importance in marketing, until now, there has been no study on the memorability of ads in the ML literature. All previous memorability studies have been conducted on short-term recall on specific content types like object and action videos. On the other hand, the advertising industry only cares about long-term memorability, and ads are almost always highly multimodal. Therefore, we release the first memorability dataset, LAMDBA, consisting of 1749 participants and 2205 ads covering 276 brands. Running statistical tests over different participant subpopulations and ad types, we find many interesting insights into what makes an ad memorable, e.g., fast-moving ads are more memorable than those with slower scenes; people who use ad-blockers remember a lower number of ads than those who don't. Next, we present a novel model, Henry, to predict the memorability of a content which achieves state-of-the-art performance across all prominent literature memorability datasets. Henry shows strong generalization performance with better results in 0-shot on unseen datasets. Finally, with the intent of memorable ad generation, we present a scalable method to build a high-quality memorable ad generation model by leveraging automatically annotated data. Our approach, SEED (Self rEwarding mEmorability Modeling), starts with a language model trained on LAMBDA as seed data and progressively trains the LLM to generate more memorable ads. We show that the generated advertisements have 44\% higher memorability scores than the original ads. Further, we release a large-scale ad dataset, UltraLAMBDA, consisting of 5 million ads with their automatically-assigned memorability scores.

  • 8 authors
·
Sep 1, 2023 1