- Optimized Monte Carlo Tree Search for Enhanced Decision Making in the FrozenLake Environment Monte Carlo Tree Search (MCTS) is a powerful algorithm for solving complex decision-making problems. This paper presents an optimized MCTS implementation applied to the FrozenLake environment, a classic reinforcement learning task characterized by stochastic transitions. The optimization leverages cumulative reward and visit count tables along with the Upper Confidence Bound for Trees (UCT) formula, resulting in efficient learning in a slippery grid world. We benchmark our implementation against other decision-making algorithms, including MCTS with Policy and Q-Learning, and perform a detailed comparison of their performance. The results demonstrate that our optimized approach effectively maximizes rewards and success rates while minimizing convergence time, outperforming baseline methods, especially in environments with inherent randomness. 1 authors · Sep 25, 2024
- Jupiter: Enhancing LLM Data Analysis Capabilities via Notebook and Inference-Time Value-Guided Search Large language models (LLMs) have shown great promise in automating data science workflows, but existing models still struggle with multi-step reasoning and tool use, which limits their effectiveness on complex data analysis tasks. To address this, we propose a scalable pipeline that extracts high-quality, tool-based data analysis tasks and their executable multi-step solutions from real-world Jupyter notebooks and associated data files. Using this pipeline, we introduce NbQA, a large-scale dataset of standardized task-solution pairs that reflect authentic tool-use patterns in practical data science scenarios. To further enhance multi-step reasoning, we present Jupiter, a framework that formulates data analysis as a search problem and applies Monte Carlo Tree Search (MCTS) to generate diverse solution trajectories for value model learning. During inference, Jupiter combines the value model and node visit counts to efficiently collect executable multi-step plans with minimal search steps. Experimental results show that Qwen2.5-7B and 14B-Instruct models on NbQA solve 77.82% and 86.38% of tasks on InfiAgent-DABench, respectively-matching or surpassing GPT-4o and advanced agent frameworks. Further evaluations demonstrate improved generalization and stronger tool-use reasoning across diverse multi-step reasoning tasks. 10 authors · Sep 11, 2025
- Modeling Sustainable City Trips: Integrating CO2e Emissions, Popularity, and Seasonality into Tourism Recommender Systems Tourism affects not only the tourism industry but also society and stakeholders such as the environment, local businesses, and residents. Tourism Recommender Systems (TRS) can be pivotal in promoting sustainable tourism by guiding travelers toward destinations with minimal negative impact. Our paper introduces a composite sustainability indicator for a city trip TRS based on the users' starting point and month of travel. This indicator integrates CO2e emissions for different transportation modes and analyses destination popularity and seasonal demand. We quantify city popularity based on user reviews, points of interest, and search trends from Tripadvisor and Google Trends data. To calculate a seasonal demand index, we leverage data from TourMIS and Airbnb. We conducted a user study to explore the fundamental trade-offs in travel decision-making and determine the weights for our proposed indicator. Finally, we demonstrate the integration of this indicator into a TRS, illustrating its ability to deliver sustainable city trip recommendations. This work lays the foundation for future research by integrating sustainability measures and contributing to responsible recommendations by TRS. 5 authors · Mar 27, 2024
- Flipping Coins to Estimate Pseudocounts for Exploration in Reinforcement Learning We propose a new method for count-based exploration in high-dimensional state spaces. Unlike previous work which relies on density models, we show that counts can be derived by averaging samples from the Rademacher distribution (or coin flips). This insight is used to set up a simple supervised learning objective which, when optimized, yields a state's visitation count. We show that our method is significantly more effective at deducing ground-truth visitation counts than previous work; when used as an exploration bonus for a model-free reinforcement learning algorithm, it outperforms existing approaches on most of 9 challenging exploration tasks, including the Atari game Montezuma's Revenge. 3 authors · Jun 5, 2023
- NAICS-Aware Graph Neural Networks for Large-Scale POI Co-visitation Prediction: A Multi-Modal Dataset and Methodology Understanding where people go after visiting one business is crucial for urban planning, retail analytics, and location-based services. However, predicting these co-visitation patterns across millions of venues remains challenging due to extreme data sparsity and the complex interplay between spatial proximity and business relationships. Traditional approaches using only geographic distance fail to capture why coffee shops attract different customer flows than fine dining restaurants, even when co-located. We introduce NAICS-aware GraphSAGE, a novel graph neural network that integrates business taxonomy knowledge through learnable embeddings to predict population-scale co-visitation patterns. Our key insight is that business semantics, captured through detailed industry codes, provide crucial signals that pure spatial models cannot explain. The approach scales to massive datasets (4.2 billion potential venue pairs) through efficient state-wise decomposition while combining spatial, temporal, and socioeconomic features in an end-to-end framework. Evaluated on our POI-Graph dataset comprising 94.9 million co-visitation records across 92,486 brands and 48 US states, our method achieves significant improvements over state-of-the-art baselines: the R-squared value increases from 0.243 to 0.625 (a 157 percent improvement), with strong gains in ranking quality (32 percent improvement in NDCG at 10). 6 authors · Jul 25, 2025
1 SEAGET: Seasonal and Active hours guided Graph Enhanced Transformer for the next POI recommendation One of the most important challenges for improving personalized services in industries like tourism is predicting users' near-future movements based on prior behavior and current circumstances. Next POI (Point of Interest) recommendation is essential for helping users and service providers by providing personalized recommendations. The intricacy of this work, however, stems from the requirement to take into consideration several variables at once, such as user preferences, time contexts, and geographic locations. POI selection is also greatly influenced by elements like a POI's operational status during desired visit times, desirability for visiting during particular seasons, and its dynamic popularity over time. POI popularity is mostly determined by check-in frequency in recent studies, ignoring visitor volumes, operational constraints, and temporal dynamics. These restrictions result in recommendations that are less than ideal and do not take into account actual circumstances. We propose the Seasonal and Active hours-guided Graph-Enhanced Transformer (SEAGET) model as a solution to these problems. By integrating variations in the seasons, operational status, and temporal dynamics into a graph-enhanced transformer framework, SEAGET capitalizes on redefined POI popularity. This invention gives more accurate and context-aware next POI predictions, with potential applications for optimizing tourist experiences and enhancing location-based services in the tourism industry. 2 authors · Mar 27, 2025
- Enhancing Travel Decision-Making: A Contrastive Learning Approach for Personalized Review Rankings in Accommodations User-generated reviews significantly influence consumer decisions, particularly in the travel domain when selecting accommodations. This paper contribution comprising two main elements. Firstly, we present a novel dataset of authentic guest reviews sourced from a prominent online travel platform, totaling over two million reviews from 50,000 distinct accommodations. Secondly, we propose an innovative approach for personalized review ranking. Our method employs contrastive learning to intricately capture the relationship between a review and the contextual information of its respective reviewer. Through a comprehensive experimental study, we demonstrate that our approach surpasses several baselines across all reported metrics. Augmented by a comparative analysis, we showcase the efficacy of our method in elevating personalized review ranking. The implications of our research extend beyond the travel domain, with potential applications in other sectors where personalized review ranking is paramount, such as online e-commerce platforms. 5 authors · Jun 30, 2024
- Urban Mobility Assessment Using LLMs Understanding urban mobility patterns and analyzing how people move around cities helps improve the overall quality of life and supports the development of more livable, efficient, and sustainable urban areas. A challenging aspect of this work is the collection of mobility data by means of user tracking or travel surveys, given the associated privacy concerns, noncompliance, and high cost. This work proposes an innovative AI-based approach for synthesizing travel surveys by prompting large language models (LLMs), aiming to leverage their vast amount of relevant background knowledge and text generation capabilities. Our study evaluates the effectiveness of this approach across various U.S. metropolitan areas by comparing the results against existing survey data at different granularity levels. These levels include (i) pattern level, which compares aggregated metrics like the average number of locations traveled and travel time, (ii) trip level, which focuses on comparing trips as whole units using transition probabilities, and (iii) activity chain level, which examines the sequence of locations visited by individuals. Our work covers several proprietary and open-source LLMs, revealing that open-source base models like Llama-2, when fine-tuned on even a limited amount of actual data, can generate synthetic data that closely mimics the actual travel survey data, and as such provides an argument for using such data in mobility studies. 3 authors · Aug 22, 2024