colab20240326ryan2
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.8884
- Accuracy: 0.6668
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 0.4599 | 0.05 | 100 | 0.9329 | 0.6642 |
| 0.3904 | 0.09 | 200 | 1.1326 | 0.6132 |
| 0.3971 | 0.14 | 300 | 1.0731 | 0.6333 |
| 0.3444 | 0.19 | 400 | 1.1920 | 0.6198 |
| 0.3266 | 0.23 | 500 | 1.1286 | 0.6459 |
| 0.704 | 0.28 | 600 | 1.1258 | 0.6260 |
| 0.5476 | 0.32 | 700 | 0.9590 | 0.6361 |
| 0.6925 | 0.37 | 800 | 0.9508 | 0.6318 |
| 0.4905 | 0.42 | 900 | 0.9142 | 0.6464 |
| 0.6835 | 0.46 | 1000 | 0.9453 | 0.6316 |
| 0.6919 | 0.51 | 1100 | 0.8452 | 0.6683 |
| 0.8017 | 0.56 | 1200 | 0.9353 | 0.6431 |
| 0.5504 | 0.6 | 1300 | 0.8929 | 0.6592 |
| 0.5523 | 0.65 | 1400 | 0.8705 | 0.6650 |
| 0.7787 | 0.7 | 1500 | 0.9147 | 0.6378 |
| 0.4896 | 0.74 | 1600 | 0.8985 | 0.6635 |
| 0.5114 | 0.79 | 1700 | 0.8605 | 0.6735 |
| 0.4811 | 0.84 | 1800 | 0.9524 | 0.6524 |
| 0.6161 | 0.88 | 1900 | 0.8507 | 0.6698 |
| 0.648 | 0.93 | 2000 | 0.8478 | 0.6748 |
| 0.5534 | 0.97 | 2100 | 0.8884 | 0.6668 |
Framework versions
- Transformers 4.39.1
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 6
Model tree for rshrott/colab20240326ryan2
Base model
google/vit-base-patch16-224-in21k