Visionkambanje's picture
Update app.py
656091a verified
import os
import gradio as gr
import requests
import pandas as pd
from smolagents import CodeAgent, DuckDuckGoSearchTool, InferenceClientModel, PythonInterpreterTool, WikipediaSearchTool, FinalAnswerTool
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Hugging Face API Key ---
HF_API_KEY = os.environ.get("HF_TOKEN")
if not HF_API_KEY:
raise ValueError("❌ Hugging Face API key not found. Please add it under Settings β†’ Variables and secrets.")
# --- Initialize Hugging Face Model ---
model = InferenceClientModel(
model_id="HuggingFaceH4/zephyr-7b-beta", # βœ… chat model
token=HF_API_KEY
)
# --- Basic Agent Definition ---
class BasicAgent:
def __init__(self, model):
self.model = model
self.agent = CodeAgent(
tools=[
DuckDuckGoSearchTool(),
PythonInterpreterTool(),
WikipediaSearchTool(),
FinalAnswerTool()
],
model=self.model
)
print("βœ… BasicAgent initialized with Hugging Face model.")
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
try:
answer = self.agent.run(question)
if not answer:
return "⚠️ Model returned no answer."
return answer
except Exception as e:
print(f"❌ Error during agent run: {e}")
return f"AGENT ERROR: {str(e)}"
# --- Run & Submit Function ---
def run_and_submit_all(profile: gr.OAuthProfile | None = None):
if not profile:
return "Please login to Hugging Face with the button.", None
username = profile.username
print(f"User logged in: {username}")
# Initialize agent
agent = BasicAgent(model=model)
# Fetch questions
questions_url = f"{DEFAULT_API_URL}/questions"
submit_url = f"{DEFAULT_API_URL}/submit"
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty or invalid format.", None
except Exception as e:
return f"Error fetching questions: {e}", None
# Run agent on all questions
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# Prepare submission
space_id = os.getenv("SPACE_ID", "your_space_id_here") # optional fallback
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
# Submit
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
return final_status, pd.DataFrame(results_log)
except Exception as e:
return f"Submission Failed: {e}", pd.DataFrame(results_log)
# --- Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown("""
**Instructions:**
1. Login with your Hugging Face account.
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, and submit.
""")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
inputs=(),
outputs=[status_output, results_table]
)
if __name__ == "__main__":
demo.launch(debug=True, share=False)