|
|
import os |
|
|
import gradio as gr |
|
|
import requests |
|
|
import pandas as pd |
|
|
|
|
|
from smolagents import CodeAgent, DuckDuckGoSearchTool, InferenceClientModel, PythonInterpreterTool, WikipediaSearchTool, FinalAnswerTool |
|
|
|
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
|
|
|
HF_API_KEY = os.environ.get("HF_TOKEN") |
|
|
if not HF_API_KEY: |
|
|
raise ValueError("β Hugging Face API key not found. Please add it under Settings β Variables and secrets.") |
|
|
|
|
|
|
|
|
model = InferenceClientModel( |
|
|
model_id="HuggingFaceH4/zephyr-7b-beta", |
|
|
token=HF_API_KEY |
|
|
) |
|
|
|
|
|
|
|
|
class BasicAgent: |
|
|
def __init__(self, model): |
|
|
self.model = model |
|
|
self.agent = CodeAgent( |
|
|
tools=[ |
|
|
DuckDuckGoSearchTool(), |
|
|
PythonInterpreterTool(), |
|
|
WikipediaSearchTool(), |
|
|
FinalAnswerTool() |
|
|
], |
|
|
model=self.model |
|
|
) |
|
|
print("β
BasicAgent initialized with Hugging Face model.") |
|
|
|
|
|
def __call__(self, question: str) -> str: |
|
|
print(f"Agent received question (first 50 chars): {question[:50]}...") |
|
|
try: |
|
|
answer = self.agent.run(question) |
|
|
if not answer: |
|
|
return "β οΈ Model returned no answer." |
|
|
return answer |
|
|
except Exception as e: |
|
|
print(f"β Error during agent run: {e}") |
|
|
return f"AGENT ERROR: {str(e)}" |
|
|
|
|
|
|
|
|
|
|
|
def run_and_submit_all(profile: gr.OAuthProfile | None = None): |
|
|
if not profile: |
|
|
return "Please login to Hugging Face with the button.", None |
|
|
username = profile.username |
|
|
print(f"User logged in: {username}") |
|
|
|
|
|
|
|
|
agent = BasicAgent(model=model) |
|
|
|
|
|
|
|
|
questions_url = f"{DEFAULT_API_URL}/questions" |
|
|
submit_url = f"{DEFAULT_API_URL}/submit" |
|
|
try: |
|
|
response = requests.get(questions_url, timeout=15) |
|
|
response.raise_for_status() |
|
|
questions_data = response.json() |
|
|
if not questions_data: |
|
|
return "Fetched questions list is empty or invalid format.", None |
|
|
except Exception as e: |
|
|
return f"Error fetching questions: {e}", None |
|
|
|
|
|
|
|
|
results_log = [] |
|
|
answers_payload = [] |
|
|
for item in questions_data: |
|
|
task_id = item.get("task_id") |
|
|
question_text = item.get("question") |
|
|
if not task_id or question_text is None: |
|
|
continue |
|
|
submitted_answer = agent(question_text) |
|
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) |
|
|
|
|
|
if not answers_payload: |
|
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
|
|
|
space_id = os.getenv("SPACE_ID", "your_space_id_here") |
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
|
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} |
|
|
|
|
|
|
|
|
try: |
|
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
|
response.raise_for_status() |
|
|
result_data = response.json() |
|
|
final_status = ( |
|
|
f"Submission Successful!\n" |
|
|
f"User: {result_data.get('username')}\n" |
|
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
|
) |
|
|
return final_status, pd.DataFrame(results_log) |
|
|
except Exception as e: |
|
|
return f"Submission Failed: {e}", pd.DataFrame(results_log) |
|
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
gr.Markdown("# Basic Agent Evaluation Runner") |
|
|
gr.Markdown(""" |
|
|
**Instructions:** |
|
|
1. Login with your Hugging Face account. |
|
|
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, and submit. |
|
|
""") |
|
|
|
|
|
gr.LoginButton() |
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
|
|
run_button.click( |
|
|
fn=run_and_submit_all, |
|
|
inputs=(), |
|
|
outputs=[status_output, results_table] |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch(debug=True, share=False) |
|
|
|