File size: 22,182 Bytes
eebc859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
import os
import sys
import tempfile
import time
import logging
import gc
from dataclasses import dataclass
from typing import Optional, Tuple, List, Any, Dict
from contextlib import contextmanager

import gradio as gr
import torch
import psutil
from dotenv import load_dotenv

load_dotenv()

# Audio preprocessing not available in Hugging Face Spaces deployment
PREPROCESSING_AVAILABLE = False


def get_env_or_secret(key: str, default: Optional[str] = None) -> Optional[str]:
    """Get environment variable or default."""
    return os.environ.get(key, default)


@dataclass
class InferenceMetrics:
    """Track inference performance metrics."""

    processing_time: float
    memory_usage: float
    device_used: str
    dtype_used: str
    model_size_mb: Optional[float] = None


@dataclass
class PreprocessingConfig:
    """Configuration for audio preprocessing pipeline."""

    normalize_format: bool = True
    normalize_volume: bool = True
    reduce_noise: bool = False
    remove_silence: bool = False


def load_asr_pipeline(
    model_id: str,
    base_model_id: str,
    device_pref: str = "auto",
    hf_token: Optional[str] = None,
    dtype_pref: str = "auto",
    chunk_length_s: Optional[int] = None,
    return_timestamps: bool = False,
):
    logging.basicConfig(level=logging.INFO)
    logger = logging.getLogger(__name__)

    logger.info(f"Loading ASR pipeline for model: {model_id}")
    logger.info(
        f"Device preference: {device_pref}, Token provided: {hf_token is not None}"
    )

    import torch
    from transformers import pipeline

    # Pick optimal device for inference
    device_str = "cpu"
    if device_pref == "auto":
        if torch.cuda.is_available():
            device_str = "cuda"
            logger.info(f"Using CUDA: {torch.cuda.get_device_name()}")
        elif getattr(torch.backends, "mps", None) and torch.backends.mps.is_available():
            device_str = "mps"
            logger.info("Using Apple Silicon MPS for inference")
        else:
            device_str = "cpu"
            logger.info("Using CPU for inference")
    else:
        device_str = device_pref

    # Pick dtype - optimized for inference performance
    dtype = None
    if dtype_pref == "auto":
        # For whisper-medium models, use float32 for stability in medical transcription
        if "whisper-medium" in model_id:
            dtype = torch.float32
            logger.info(
                f"Using float32 for {model_id} (medical transcription stability)"
            )
        elif device_str == "cuda":
            dtype = torch.float16  # Use half precision on GPU for speed
            logger.info("Using float16 on CUDA for faster inference")
        else:
            dtype = torch.float32
    else:
        dtype = {"float32": torch.float32, "float16": torch.float16}.get(
            dtype_pref, torch.float32
        )

    logger.info("Pipeline configuration:")
    logger.info(f"  Model: {model_id}")
    logger.info(f"  Base model: {base_model_id}")
    logger.info(f"  Dtype: {dtype}")
    logger.info(f"  Device: {device_str}")
    logger.info(f"  Chunk length: {chunk_length_s}s")
    logger.info(f"  Return timestamps: {return_timestamps}")

    # Use ultra-simplified approach to avoid all compatibility issues
    try:
        logger.info(
            "Setting up ultra-simplified pipeline to avoid forced_decoder_ids conflicts..."
        )

        # Create pipeline with absolute minimal configuration
        asr = pipeline(
            task="automatic-speech-recognition",
            model=model_id,
            torch_dtype=dtype,
            device=0
            if device_str == "cuda"
            else ("mps" if device_str == "mps" else "cpu"),
            token=hf_token,
        )

        # Post-loading cleanup to remove any forced_decoder_ids
        if hasattr(asr.model, "generation_config"):
            if hasattr(asr.model.generation_config, "forced_decoder_ids"):
                logger.info("Removing forced_decoder_ids from model generation config")
                asr.model.generation_config.forced_decoder_ids = None

        # Set basic parameters after loading
        if chunk_length_s:
            logger.info(f"Setting chunk_length_s to {chunk_length_s}")

        logger.info(f"Successfully created ultra-simplified pipeline for: {model_id}")

    except Exception as e:
        logger.error(f"Ultra-simplified pipeline creation failed: {e}")
        logger.info("Falling back to absolute minimal settings...")

        try:
            # Fallback with absolute minimal settings
            fallback_dtype = torch.float32

            asr = pipeline(
                task="automatic-speech-recognition",
                model=model_id,
                torch_dtype=fallback_dtype,
                device="cpu",  # Force CPU for maximum compatibility
                token=hf_token,
            )

            # Post-loading cleanup
            if hasattr(asr.model, "generation_config"):
                if hasattr(asr.model.generation_config, "forced_decoder_ids"):
                    logger.info("Removing forced_decoder_ids from fallback model")
                    asr.model.generation_config.forced_decoder_ids = None

            device_str = "cpu"
            dtype = fallback_dtype
            logger.info(
                f"Minimal fallback pipeline created with dtype: {fallback_dtype}"
            )

        except Exception as fallback_error:
            logger.error(f"Minimal fallback failed: {fallback_error}")
            raise

    return asr, device_str, str(dtype).replace("torch.", "")


@contextmanager
def memory_monitor():
    """Context manager to monitor memory usage during inference."""
    process = psutil.Process()
    start_memory = process.memory_info().rss / 1024 / 1024  # MB
    yield
    end_memory = process.memory_info().rss / 1024 / 1024  # MB
    return end_memory - start_memory


def transcribe_local(
    audio_path: str,
    model_id: str,
    base_model_id: str,
    language: Optional[str],
    task: str,
    device_pref: str,
    dtype_pref: str,
    hf_token: Optional[str],
    chunk_length_s: Optional[int],
    stride_length_s: Optional[int],
    return_timestamps: bool,
) -> Dict[str, Any]:
    logger = logging.getLogger(__name__)
    logger.info(f"Starting transcription: {os.path.basename(audio_path)}")
    logger.info(f"Model: {model_id}")

    # Validate audio_path
    if audio_path is None:
        raise ValueError("Audio path is None")
    if not isinstance(audio_path, (str, bytes, os.PathLike)):
        raise TypeError(
            f"Audio path must be str, bytes or os.PathLike, got {type(audio_path)}"
        )
    if not os.path.exists(audio_path):
        raise FileNotFoundError(f"Audio file not found: {audio_path}")

    # Load ASR pipeline with performance monitoring
    start_time = time.time()

    asr, device_str, dtype_str = load_asr_pipeline(
        model_id=model_id,
        base_model_id=base_model_id,
        device_pref=device_pref,
        hf_token=hf_token,
        dtype_pref=dtype_pref,
        chunk_length_s=chunk_length_s,
        return_timestamps=return_timestamps,
    )

    load_time = time.time() - start_time
    logger.info(f"Model loaded in {load_time:.2f}s")

    # Simplified configuration to avoid compatibility issues
    # Let the pipeline handle generation parameters internally
    logger.info("Using simplified configuration to avoid model compatibility issues")

    # Setup inference parameters with performance monitoring
    try:
        # Start with minimal parameters to avoid conflicts
        asr_kwargs = {}

        # Only add parameters that are safe and supported
        if return_timestamps:
            asr_kwargs["return_timestamps"] = return_timestamps
            logger.info("Timestamps enabled")

        # Apply chunking strategy only if supported
        if chunk_length_s:
            try:
                asr_kwargs["chunk_length_s"] = chunk_length_s
                logger.info(f"Using chunking strategy: {chunk_length_s}s")
            except Exception as chunk_error:
                logger.warning(f"Chunking not supported: {chunk_error}")

        if stride_length_s is not None:
            try:
                asr_kwargs["stride_length_s"] = stride_length_s
                logger.info(f"Using stride: {stride_length_s}s")
            except Exception as stride_error:
                logger.warning(f"Stride not supported: {stride_error}")

        logger.info(f"Inference parameters configured: {list(asr_kwargs.keys())}")

        # Run inference with performance monitoring
        inference_start = time.time()
        memory_before = psutil.Process().memory_info().rss / 1024 / 1024  # MB

        try:
            # Primary inference attempt with safe parameters
            if asr_kwargs:
                result = asr(audio_path, **asr_kwargs)
            else:
                # Fallback to no parameters if all failed
                result = asr(audio_path)

            inference_time = time.time() - inference_start
            memory_after = psutil.Process().memory_info().rss / 1024 / 1024  # MB
            memory_used = memory_after - memory_before

            logger.info(f"Inference completed successfully in {inference_time:.2f}s")
            logger.info(f"Memory used: {memory_used:.1f}MB")

        except Exception as e:
            error_msg = str(e)
            logger.warning(f"Inference failed with parameters: {error_msg}")

            # Try with absolutely minimal parameters
            if "forced_decoder_ids" in error_msg:
                logger.info(
                    "Detected forced_decoder_ids error, trying with no parameters..."
                )
            elif (
                "probability tensor contains either inf, nan or element < 0"
                in error_msg
            ):
                logger.info(
                    "Detected numerical instability, trying with no parameters..."
                )
            else:
                logger.info("Unknown error, trying with no parameters...")

            try:
                inference_start = time.time()
                result = asr(audio_path)  # No parameters at all
                inference_time = time.time() - inference_start
                memory_used = 0  # Reset memory tracking

                logger.info(f"Minimal inference completed in {inference_time:.2f}s")
            except Exception as final_error:
                logger.error(f"All inference attempts failed: {final_error}")
                raise

    except Exception as e:
        logger.error(f"Inference failed: {e}")
        raise

    # Cleanup GPU memory after inference
    if device_str == "cuda":
        torch.cuda.empty_cache()
    gc.collect()

    # Return results with performance metrics
    meta = {
        "device": device_str,
        "dtype": dtype_str,
        "inference_time": inference_time,
        "memory_used_mb": memory_used,
        "model_type": "original" if model_id == base_model_id else "fine-tuned",
    }

    return {"result": result, "meta": meta}


def handle_whisper_problematic_output(text: str, model_name: str = "Whisper") -> dict:
    """Gestisce gli output problematici di Whisper come '!', '.', stringhe vuote, ecc."""
    if not text:
        return {
            "text": "[WHISPER ISSUE: Output vuoto - Audio troppo corto o silenzioso]",
            "is_problematic": True,
            "original": text,
            "issue_type": "empty",
        }

    text_stripped = text.strip()

    # Casi problematici comuni
    problematic_outputs = {
        "!": "Audio troppo corto/silenzioso",
        ".": "Audio di bassa qualità",
        "?": "Audio incomprensibile",
        "...": "Audio troppo lungo senza parlato",
        "--": "Audio distorto",
        "—": "Audio con troppo rumore",
        " per!": "Audio parzialmente comprensibile",
        "per!": "Audio parzialmente comprensibile",
    }

    if text_stripped in problematic_outputs:
        return {
            "text": f"[WHISPER ISSUE: '{text_stripped}' - {problematic_outputs[text_stripped]}]",
            "is_problematic": True,
            "original": text,
            "issue_type": text_stripped,
            "suggestion": problematic_outputs[text_stripped],
        }

    # Testo troppo corto (meno di 3 caratteri e non alfabetico)
    if len(text_stripped) <= 2 and not text_stripped.isalpha():
        return {
            "text": f"[WHISPER ISSUE: '{text_stripped}' - Output troppo corto/simbolico]",
            "is_problematic": True,
            "original": text,
            "issue_type": "short_symbolic",
        }

    return {"text": text, "is_problematic": False, "original": text}


def transcribe_comparison(audio_file):
    """Main function for Gradio interface."""
    if audio_file is None:
        return "❌ Nessun file audio fornito", "❌ Nessun file audio fornito"

    # Model configuration
    model_id = get_env_or_secret("HF_MODEL_ID")
    base_model_id = get_env_or_secret("BASE_WHISPER_MODEL_ID")
    hf_token = get_env_or_secret("HF_TOKEN") or get_env_or_secret(
        "HUGGINGFACEHUB_API_TOKEN"
    )

    if not model_id or not base_model_id:
        error_msg = "❌ Modelli non configurati. Impostare HF_MODEL_ID e BASE_WHISPER_MODEL_ID nelle variabili d'ambiente"
        return error_msg, error_msg

    # Preprocessing sempre attivo (nascosto all'utente)
    # Non viene più utilizzato nel codice ma potrebbe servire per future implementazioni

    # Fixed settings optimized for medical transcription
    language = "it"  # Always Italian for ScribeAId
    task = "transcribe"
    return_ts = True  # Timestamps for medical report segments
    device_pref = "auto"  # Auto-detect best device
    dtype_pref = "auto"  # Auto-select optimal precision
    chunk_len = 7  # 7-second chunks for better context
    stride_len = 1  # Minimal stride for accuracy

    try:
        # Use the audio file path directly from Gradio
        tmp_path = audio_file

        original_result = None
        finetuned_result = None
        original_text = ""
        finetuned_text = ""

        try:
            # Transcribe with original model
            original_result = transcribe_local(
                audio_path=tmp_path,
                model_id=base_model_id,
                base_model_id=base_model_id,
                language=language,
                task=task,
                device_pref=device_pref,
                dtype_pref=dtype_pref,
                hf_token=None,  # Base model doesn't need token
                chunk_length_s=int(chunk_len) if chunk_len else None,
                stride_length_s=int(stride_len) if stride_len else None,
                return_timestamps=return_ts,
            )

            # Extract text from result
            if isinstance(original_result["result"], dict):
                original_text = original_result["result"].get(
                    "text"
                ) or original_result["result"].get("transcription")
            elif isinstance(original_result["result"], str):
                original_text = original_result["result"]

            if original_text:
                result = handle_whisper_problematic_output(
                    original_text, "Original Whisper"
                )
                if result["is_problematic"]:
                    original_text = f"⚠️ {result['text']}\n\n💡 Suggerimenti:\n• Registra almeno 5-10 secondi di audio\n• Parla chiaramente e ad alto volume\n• Avvicinati al microfono\n• Evita rumori di fondo"
                else:
                    original_text = result["text"]
            else:
                original_text = "❌ Nessun testo restituito dal modello originale"

        except Exception as e:
            original_text = f"❌ Errore modello originale: {str(e)}"

        try:
            # Transcribe with fine-tuned model
            finetuned_result = transcribe_local(
                audio_path=tmp_path,
                model_id=model_id,
                base_model_id=base_model_id,
                language=language,
                task=task,
                device_pref=device_pref,
                dtype_pref=dtype_pref,
                hf_token=hf_token or None,
                chunk_length_s=int(chunk_len) if chunk_len else None,
                stride_length_s=int(stride_len) if stride_len else None,
                return_timestamps=return_ts,
            )

            # Extract text from result
            if isinstance(finetuned_result["result"], dict):
                finetuned_text = finetuned_result["result"].get(
                    "text"
                ) or finetuned_result["result"].get("transcription")
            elif isinstance(finetuned_result["result"], str):
                finetuned_text = finetuned_result["result"]

            if finetuned_text:
                result = handle_whisper_problematic_output(
                    finetuned_text, "Fine-tuned Model"
                )
                if result["is_problematic"]:
                    finetuned_text = f"⚠️ {result['text']}\n\n💡 Suggerimenti:\n• Registra almeno 5-10 secondi di audio\n• Parla chiaramente e ad alto volume\n• Avvicinati al microfono\n• Evita rumori di fondo"
                else:
                    finetuned_text = result["text"]
            else:
                finetuned_text = "❌ Nessun testo restituito dal modello fine-tuned"

        except Exception as e:
            finetuned_text = f"❌ Errore modello fine-tuned: {str(e)}"

        # GPU memory cleanup
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        gc.collect()

        return original_text, finetuned_text

    except Exception as e:
        error_msg = f"❌ Errore generale: {str(e)}"
        return error_msg, error_msg


# Gradio interface
def create_interface():
    """Create and configure the Gradio interface."""

    model_id = get_env_or_secret("HF_MODEL_ID", "ReportAId/whisper-medium-it-finetuned")
    base_model_id = get_env_or_secret("BASE_WHISPER_MODEL_ID", "openai/whisper-medium")

    # Carica il logo SVG inline per garantirne la visualizzazione anche senza routing file
    logo_html = None
    try:
        logo_path = os.path.join(os.path.dirname(__file__), "assets", "ScribeAId.svg")
        with open(logo_path, "r", encoding="utf-8") as f:
            svg_content = f.read()
        # Wrappa lo svg in un contenitore centrato
        logo_html = f"""
        <div style=\"text-align: center; margin: 16px 0 8px;\">
            <div style=\"display:inline-block; height:60px;\">{svg_content}</div>
        </div>
        """
    except Exception:
        # Fallback al path file= se per qualche motivo non riusciamo a leggere il file
        logo_html = """
        <div style=\"text-align: center; margin: 16px 0 8px;\">
            <img src=\"file=assets/ScribeAId.svg\" alt=\"ScribeAId\" style=\"height: 60px; margin-bottom: 8px;\">
        </div>
        """

    with gr.Blocks(
        title="ScribeAId - Medical Transcription",
        theme=gr.themes.Default(primary_hue="blue"),
        css=".gradio-container{max-width: 900px !important; margin: 0 auto !important;} .center-col{display:flex;flex-direction:column;align-items:center;} .center-col .wrap{width:100%;}",
    ) as demo:
        # Header con logo ScribeAId (semplice, bianco/nero)
        gr.HTML(logo_html)
        gr.Markdown("""
        Quest’applicazione confronta un Whisper V3 di base con il modello open-source fine-tuned pubblicato da ReportAId su dati ambulatoriali italiani. È progettato per mitigare errori noti e migliorare le performance. Carica un audio o registra la voce: noterai trascrizioni più accurate di termini clinici come “Holter delle 24 ore”, “fibrillazione atriale” o “pressione sistolica”.
        """)

        with gr.Row():
            with gr.Column():
                gr.Markdown(f"""
                **⚙️ Impostazioni**  
                - Modello originale: `{base_model_id}`  
                - Modello fine-tuned: `{model_id}`  
                - Lingua: Italiano (it)  
                - Preprocessing audio: ottimizzato per registrazioni mediche
                """)

        gr.Markdown("---")

        # Titolo sezione input
        gr.Markdown("## Input")

        # Audio input e pulsante allineati a sinistra
        audio_input = gr.Audio(
            label="📥 Registra dal microfono o carica un file",
            type="filepath",
            sources=["microphone", "upload"],
            format="wav",
            streaming=False,
            interactive=True,
        )
        transcribe_btn = gr.Button("🚀 Trascrivi e Confronta", variant="primary")

        gr.Markdown("---")

        gr.Markdown("## Output")

        with gr.Row():
            with gr.Column():
                gr.Markdown("### Modello base (Whisper V3)")
                original_output = gr.Textbox(
                    label="Transcription",
                    lines=12,
                    interactive=False,
                    show_copy_button=True,
                )

            with gr.Column():
                gr.Markdown("### Modello fine-tuned ReportAId")
                finetuned_output = gr.Textbox(
                    label="Transcription",
                    lines=12,
                    interactive=False,
                    show_copy_button=True,
                )

        # Click event
        transcribe_btn.click(
            fn=transcribe_comparison,
            inputs=[audio_input],
            outputs=[original_output, finetuned_output],
            show_progress=True,
        )

    return demo


if __name__ == "__main__":
    # Configure logging
    logging.basicConfig(
        level=logging.INFO,
        format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
    )

    demo = create_interface()
    # Launch configuration for Hugging Face Spaces
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_error=True,
        inbrowser=False,
        quiet=False,
    )