Apply 8 categories from FinBen paper
Browse files- app.py +118 -44
- src/about.py +35 -35
- src/display/utils.py +9 -16
app.py
CHANGED
|
@@ -64,20 +64,29 @@ leaderboard_df = original_df.copy()
|
|
| 64 |
def update_table(
|
| 65 |
hidden_df: pd.DataFrame,
|
| 66 |
columns_info: list,
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
type_query: list,
|
| 72 |
precision_query: list,
|
| 73 |
size_query: list,
|
| 74 |
show_deleted: bool,
|
| 75 |
query: str,
|
| 76 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
| 78 |
filtered_df = filter_queries(query, filtered_df)
|
| 79 |
-
# Combine all column selections
|
| 80 |
-
selected_columns = columns_info + columns_eval + columns_metadata + columns_popularity + columns_revision
|
| 81 |
df = select_columns(filtered_df, selected_columns)
|
| 82 |
return df
|
| 83 |
|
|
@@ -91,13 +100,18 @@ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
|
| 91 |
AutoEvalColumn.model_type_symbol.name,
|
| 92 |
AutoEvalColumn.model.name,
|
| 93 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
# We use COLS to maintain sorting
|
| 95 |
filtered_df = df[
|
| 96 |
-
|
| 97 |
]
|
| 98 |
return filtered_df
|
| 99 |
|
| 100 |
|
|
|
|
| 101 |
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
| 102 |
final_df = []
|
| 103 |
if query != "":
|
|
@@ -138,7 +152,7 @@ def filter_models(
|
|
| 138 |
return filtered_df
|
| 139 |
|
| 140 |
def uncheck_all():
|
| 141 |
-
return [], [], [], [], []
|
| 142 |
|
| 143 |
demo = gr.Blocks(css=custom_css)
|
| 144 |
with demo:
|
|
@@ -164,32 +178,67 @@ with demo:
|
|
| 164 |
label="Model Information",
|
| 165 |
interactive=True,
|
| 166 |
)
|
| 167 |
-
with gr.Tab("
|
| 168 |
-
|
| 169 |
-
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "
|
| 170 |
-
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "
|
| 171 |
-
label="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
interactive=True,
|
| 173 |
)
|
| 174 |
-
with gr.Tab("
|
| 175 |
-
|
| 176 |
-
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "
|
| 177 |
-
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "
|
| 178 |
-
label="
|
| 179 |
interactive=True,
|
| 180 |
)
|
| 181 |
-
with gr.Tab("
|
| 182 |
-
|
| 183 |
-
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "
|
| 184 |
-
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "
|
| 185 |
-
label="
|
| 186 |
interactive=True,
|
| 187 |
)
|
| 188 |
-
with gr.Tab("
|
| 189 |
-
|
| 190 |
-
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "
|
| 191 |
-
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "
|
| 192 |
-
label="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
interactive=True,
|
| 194 |
)
|
| 195 |
with gr.Row():
|
|
@@ -199,10 +248,16 @@ with demo:
|
|
| 199 |
inputs=[],
|
| 200 |
outputs=[
|
| 201 |
shown_columns_info,
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
],
|
| 207 |
)
|
| 208 |
with gr.Row():
|
|
@@ -236,16 +291,17 @@ with demo:
|
|
| 236 |
leaderboard_table = gr.Dataframe(
|
| 237 |
value=leaderboard_df[
|
| 238 |
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
| 239 |
-
+ [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default]
|
| 240 |
],
|
| 241 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
| 242 |
-
+ [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
|
| 243 |
datatype=TYPES,
|
| 244 |
elem_id="leaderboard-table",
|
| 245 |
interactive=False,
|
| 246 |
visible=True,
|
| 247 |
)
|
| 248 |
|
|
|
|
| 249 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 250 |
hidden_leaderboard_table_for_search = gr.Dataframe(
|
| 251 |
value=original_df[COLS],
|
|
@@ -258,10 +314,15 @@ with demo:
|
|
| 258 |
inputs=[
|
| 259 |
hidden_leaderboard_table_for_search,
|
| 260 |
shown_columns_info,
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
filter_columns_type,
|
| 266 |
filter_columns_precision,
|
| 267 |
filter_columns_size,
|
|
@@ -271,8 +332,16 @@ with demo:
|
|
| 271 |
outputs=leaderboard_table,
|
| 272 |
)
|
| 273 |
for selector in [
|
| 274 |
-
shown_columns_info,
|
| 275 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
filter_columns_type, filter_columns_precision,
|
| 277 |
filter_columns_size, deleted_models_visibility
|
| 278 |
]:
|
|
@@ -281,10 +350,15 @@ with demo:
|
|
| 281 |
inputs=[
|
| 282 |
hidden_leaderboard_table_for_search,
|
| 283 |
shown_columns_info,
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 288 |
filter_columns_type,
|
| 289 |
filter_columns_precision,
|
| 290 |
filter_columns_size,
|
|
|
|
| 64 |
def update_table(
|
| 65 |
hidden_df: pd.DataFrame,
|
| 66 |
columns_info: list,
|
| 67 |
+
columns_IE: list,
|
| 68 |
+
columns_TA: list,
|
| 69 |
+
columns_QA: list,
|
| 70 |
+
columns_TG: list,
|
| 71 |
+
columns_RM: list,
|
| 72 |
+
columns_FO: list,
|
| 73 |
+
columns_DM: list,
|
| 74 |
+
columns_spanish: list,
|
| 75 |
+
columns_other: list,
|
| 76 |
type_query: list,
|
| 77 |
precision_query: list,
|
| 78 |
size_query: list,
|
| 79 |
show_deleted: bool,
|
| 80 |
query: str,
|
| 81 |
):
|
| 82 |
+
# Combine all column selections
|
| 83 |
+
selected_columns = (
|
| 84 |
+
columns_info + columns_IE + columns_TA + columns_QA + columns_TG +
|
| 85 |
+
columns_RM + columns_FO + columns_DM + columns_spanish + columns_other
|
| 86 |
+
)
|
| 87 |
+
# Filter models based on queries
|
| 88 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
| 89 |
filtered_df = filter_queries(query, filtered_df)
|
|
|
|
|
|
|
| 90 |
df = select_columns(filtered_df, selected_columns)
|
| 91 |
return df
|
| 92 |
|
|
|
|
| 100 |
AutoEvalColumn.model_type_symbol.name,
|
| 101 |
AutoEvalColumn.model.name,
|
| 102 |
]
|
| 103 |
+
|
| 104 |
+
# Ensure no duplicates when never_hidden and displayed_by_default are both True
|
| 105 |
+
unique_columns = set(always_here_cols + columns)
|
| 106 |
+
|
| 107 |
# We use COLS to maintain sorting
|
| 108 |
filtered_df = df[
|
| 109 |
+
[c for c in COLS if c in df.columns and c in unique_columns]
|
| 110 |
]
|
| 111 |
return filtered_df
|
| 112 |
|
| 113 |
|
| 114 |
+
|
| 115 |
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
| 116 |
final_df = []
|
| 117 |
if query != "":
|
|
|
|
| 152 |
return filtered_df
|
| 153 |
|
| 154 |
def uncheck_all():
|
| 155 |
+
return [], [], [], [], [], [], [], [], [], []
|
| 156 |
|
| 157 |
demo = gr.Blocks(css=custom_css)
|
| 158 |
with demo:
|
|
|
|
| 178 |
label="Model Information",
|
| 179 |
interactive=True,
|
| 180 |
)
|
| 181 |
+
with gr.Tab("Information Extraction (IE)"):
|
| 182 |
+
shown_columns_IE = gr.CheckboxGroup(
|
| 183 |
+
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Information Extraction (IE)"],
|
| 184 |
+
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Information Extraction (IE)"],
|
| 185 |
+
label="Information Extraction (IE)",
|
| 186 |
+
interactive=True,
|
| 187 |
+
)
|
| 188 |
+
with gr.Tab("Textual Analysis (TA)"):
|
| 189 |
+
shown_columns_TA = gr.CheckboxGroup(
|
| 190 |
+
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Textual Analysis (TA)"],
|
| 191 |
+
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Textual Analysis (TA)"],
|
| 192 |
+
label="Textual Analysis (TA)",
|
| 193 |
+
interactive=True,
|
| 194 |
+
)
|
| 195 |
+
with gr.Tab("Question Answering (QA)"):
|
| 196 |
+
shown_columns_QA = gr.CheckboxGroup(
|
| 197 |
+
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Question Answering (QA)"],
|
| 198 |
+
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Question Answering (QA)"],
|
| 199 |
+
label="Question Answering (QA)",
|
| 200 |
+
interactive=True,
|
| 201 |
+
)
|
| 202 |
+
with gr.Tab("Text Generation (TG)"):
|
| 203 |
+
shown_columns_TG = gr.CheckboxGroup(
|
| 204 |
+
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Text Generation (TG)"],
|
| 205 |
+
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Text Generation (TG)"],
|
| 206 |
+
label="Text Generation (TG)",
|
| 207 |
+
interactive=True,
|
| 208 |
+
)
|
| 209 |
+
with gr.Tab("Risk Management (RM)"):
|
| 210 |
+
shown_columns_RM = gr.CheckboxGroup(
|
| 211 |
+
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Risk Management (RM)"],
|
| 212 |
+
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Risk Management (RM)"],
|
| 213 |
+
label="Risk Management (RM)",
|
| 214 |
interactive=True,
|
| 215 |
)
|
| 216 |
+
with gr.Tab("Forecasting (FO)"):
|
| 217 |
+
shown_columns_FO = gr.CheckboxGroup(
|
| 218 |
+
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Forecasting (FO)"],
|
| 219 |
+
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Forecasting (FO)"],
|
| 220 |
+
label="Forecasting (FO)",
|
| 221 |
interactive=True,
|
| 222 |
)
|
| 223 |
+
with gr.Tab("Decision-Making (DM)"):
|
| 224 |
+
shown_columns_DM = gr.CheckboxGroup(
|
| 225 |
+
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Decision-Making (DM)"],
|
| 226 |
+
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Decision-Making (DM)"],
|
| 227 |
+
label="Decision-Making (DM)",
|
| 228 |
interactive=True,
|
| 229 |
)
|
| 230 |
+
with gr.Tab("Spanish"):
|
| 231 |
+
shown_columns_spanish = gr.CheckboxGroup(
|
| 232 |
+
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Spanish"],
|
| 233 |
+
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Spanish"],
|
| 234 |
+
label="Spanish",
|
| 235 |
+
interactive=True,
|
| 236 |
+
)
|
| 237 |
+
with gr.Tab("Other"):
|
| 238 |
+
shown_columns_other = gr.CheckboxGroup(
|
| 239 |
+
choices=[c.name for c in fields(AutoEvalColumn) if c.category == "Other"],
|
| 240 |
+
value=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.category == "Other"],
|
| 241 |
+
label="Other",
|
| 242 |
interactive=True,
|
| 243 |
)
|
| 244 |
with gr.Row():
|
|
|
|
| 248 |
inputs=[],
|
| 249 |
outputs=[
|
| 250 |
shown_columns_info,
|
| 251 |
+
shown_columns_IE,
|
| 252 |
+
shown_columns_TA,
|
| 253 |
+
shown_columns_QA,
|
| 254 |
+
shown_columns_TG,
|
| 255 |
+
shown_columns_RM,
|
| 256 |
+
shown_columns_FO,
|
| 257 |
+
shown_columns_DM,
|
| 258 |
+
shown_columns_spanish,
|
| 259 |
+
shown_columns_other,
|
| 260 |
+
|
| 261 |
],
|
| 262 |
)
|
| 263 |
with gr.Row():
|
|
|
|
| 291 |
leaderboard_table = gr.Dataframe(
|
| 292 |
value=leaderboard_df[
|
| 293 |
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
| 294 |
+
+ [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.never_hidden]
|
| 295 |
],
|
| 296 |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
| 297 |
+
+ [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.never_hidden],
|
| 298 |
datatype=TYPES,
|
| 299 |
elem_id="leaderboard-table",
|
| 300 |
interactive=False,
|
| 301 |
visible=True,
|
| 302 |
)
|
| 303 |
|
| 304 |
+
|
| 305 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 306 |
hidden_leaderboard_table_for_search = gr.Dataframe(
|
| 307 |
value=original_df[COLS],
|
|
|
|
| 314 |
inputs=[
|
| 315 |
hidden_leaderboard_table_for_search,
|
| 316 |
shown_columns_info,
|
| 317 |
+
shown_columns_IE,
|
| 318 |
+
shown_columns_TA,
|
| 319 |
+
shown_columns_QA,
|
| 320 |
+
shown_columns_TG,
|
| 321 |
+
shown_columns_RM,
|
| 322 |
+
shown_columns_FO,
|
| 323 |
+
shown_columns_DM,
|
| 324 |
+
shown_columns_spanish,
|
| 325 |
+
shown_columns_other,
|
| 326 |
filter_columns_type,
|
| 327 |
filter_columns_precision,
|
| 328 |
filter_columns_size,
|
|
|
|
| 332 |
outputs=leaderboard_table,
|
| 333 |
)
|
| 334 |
for selector in [
|
| 335 |
+
shown_columns_info,
|
| 336 |
+
shown_columns_IE,
|
| 337 |
+
shown_columns_TA,
|
| 338 |
+
shown_columns_QA,
|
| 339 |
+
shown_columns_TG,
|
| 340 |
+
shown_columns_RM,
|
| 341 |
+
shown_columns_FO,
|
| 342 |
+
shown_columns_DM,
|
| 343 |
+
shown_columns_spanish,
|
| 344 |
+
shown_columns_other,
|
| 345 |
filter_columns_type, filter_columns_precision,
|
| 346 |
filter_columns_size, deleted_models_visibility
|
| 347 |
]:
|
|
|
|
| 350 |
inputs=[
|
| 351 |
hidden_leaderboard_table_for_search,
|
| 352 |
shown_columns_info,
|
| 353 |
+
shown_columns_IE,
|
| 354 |
+
shown_columns_TA,
|
| 355 |
+
shown_columns_QA,
|
| 356 |
+
shown_columns_TG,
|
| 357 |
+
shown_columns_RM,
|
| 358 |
+
shown_columns_FO,
|
| 359 |
+
shown_columns_DM,
|
| 360 |
+
shown_columns_spanish,
|
| 361 |
+
shown_columns_other,
|
| 362 |
filter_columns_type,
|
| 363 |
filter_columns_precision,
|
| 364 |
filter_columns_size,
|
src/about.py
CHANGED
|
@@ -7,46 +7,46 @@ class Task:
|
|
| 7 |
benchmark: str
|
| 8 |
metric: str
|
| 9 |
col_name: str
|
|
|
|
| 10 |
|
| 11 |
|
| 12 |
# Select your tasks here
|
| 13 |
# ---------------------------------------------------
|
| 14 |
class Tasks(Enum):
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
task50 = Task("travelinsurance", "MCC", "travelinsurance")
|
| 50 |
|
| 51 |
|
| 52 |
NUM_FEWSHOT = 0 # Change with your few shot
|
|
|
|
| 7 |
benchmark: str
|
| 8 |
metric: str
|
| 9 |
col_name: str
|
| 10 |
+
category: str
|
| 11 |
|
| 12 |
|
| 13 |
# Select your tasks here
|
| 14 |
# ---------------------------------------------------
|
| 15 |
class Tasks(Enum):
|
| 16 |
+
task0 = Task("FPB", "F1", "FPB", category="Spanish")
|
| 17 |
+
task2 = Task("FiQA-SA", "F1", "FiQA-SA", category="Textual Analysis (TA)")
|
| 18 |
+
task3 = Task("TSA", "RMSE", "TSA", category="Textual Analysis (TA)")
|
| 19 |
+
task4 = Task("Headlines", "AvgF1", "Headlines", category="Textual Analysis (TA)")
|
| 20 |
+
task5 = Task("FOMC", "F1", "FOMC", category="Forecasting (FO)")
|
| 21 |
+
task7 = Task("FinArg-ACC", "MicroF1", "FinArg-ACC", category="Textual Analysis (TA)")
|
| 22 |
+
task8 = Task("FinArg-ARC", "MicroF1", "FinArg-ARC", category="Textual Analysis (TA)")
|
| 23 |
+
task9 = Task("MultiFin", "MicroF1", "Multifin", category="Textual Analysis (TA)")
|
| 24 |
+
task10 = Task("MA", "MicroF1", "MA", category="Textual Analysis (TA)")
|
| 25 |
+
task11 = Task("MLESG", "MicroF1", "MLESG", category="Textual Analysis (TA)")
|
| 26 |
+
task12 = Task("NER", "EntityF1", "NER", category="Information Extraction (IE)")
|
| 27 |
+
task13 = Task("FINER-ORD", "EntityF1", "FINER-ORD", category="Information Extraction (IE)")
|
| 28 |
+
task14 = Task("FinRED", "F1", "FinRED", category="Information Extraction (IE)")
|
| 29 |
+
task15 = Task("SC", "F1", "SC", category="Spanish")
|
| 30 |
+
task16 = Task("CD", "F1", "CD", category="Spanish")
|
| 31 |
+
task17 = Task("FinQA", "EmAcc", "FinQA", category="Question Answering (QA)")
|
| 32 |
+
task18 = Task("TATQA", "EmAcc", "TATQA", category="Question Answering (QA)")
|
| 33 |
+
task19 = Task("ConvFinQA", "EmAcc", "ConvFinQA", category="Question Answering (QA)")
|
| 34 |
+
task20 = Task("FNXL", "EntityF1", "FNXL", category="Information Extraction (IE)")
|
| 35 |
+
task21 = Task("FSRL", "EntityF1", "FSRL", category="Information Extraction (IE)")
|
| 36 |
+
task22 = Task("EDTSUM", "Rouge-1", "EDTSUM", category="Text Generation (TG)")
|
| 37 |
+
task25 = Task("ECTSUM", "Rouge-1", "ECTSUM", category="Text Generation (TG)")
|
| 38 |
+
task28 = Task("BigData22", "Acc", "BigData22", category="Risk Management (RM)")
|
| 39 |
+
task30 = Task("ACL18", "Acc", "ACL18", category="Decision-Making (DM)")
|
| 40 |
+
task32 = Task("CIKM18", "Acc", "CIKM18", category="Decision-Making (DM)")
|
| 41 |
+
task34 = Task("German", "MCC", "German", category="Decision-Making (DM)")
|
| 42 |
+
task36 = Task("Australian", "MCC", "Australian", category="Decision-Making (DM)")
|
| 43 |
+
task38 = Task("LendingClub", "MCC", "LendingClub", category="Risk Management (RM)")
|
| 44 |
+
task40 = Task("ccf", "MCC", "ccf", category="Risk Management (RM)")
|
| 45 |
+
task42 = Task("ccfraud", "MCC", "ccfraud", category="Risk Management (RM)")
|
| 46 |
+
task44 = Task("polish", "MCC", "polish", category="Risk Management (RM)")
|
| 47 |
+
task46 = Task("taiwan", "MCC", "taiwan", category="Risk Management (RM)")
|
| 48 |
+
task48 = Task("portoseguro", "MCC", "portoseguro", category="Risk Management (RM)")
|
| 49 |
+
task50 = Task("travelinsurance", "MCC", "travelinsurance", category="Risk Management (RM)")
|
|
|
|
| 50 |
|
| 51 |
|
| 52 |
NUM_FEWSHOT = 0 # Change with your few shot
|
src/display/utils.py
CHANGED
|
@@ -27,26 +27,19 @@ auto_eval_column_dict = []
|
|
| 27 |
# Model Information
|
| 28 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, category="Model Information", never_hidden=True)])
|
| 29 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, category="Model Information", never_hidden=True)])
|
|
|
|
| 30 |
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False, category="Model Information")])
|
| 31 |
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False, category="Model Information")])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
# Evaluation Scores
|
| 34 |
-
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True, category="Evaluation Scores")])
|
| 35 |
for task in Tasks:
|
| 36 |
-
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True, category=
|
| 37 |
-
|
| 38 |
-
# Model Metadata
|
| 39 |
-
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, category="Model Metadata", hidden=True)])
|
| 40 |
-
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False, category="Model Metadata")])
|
| 41 |
-
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False, category="Model Metadata")])
|
| 42 |
-
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False, category="Model Metadata")])
|
| 43 |
-
|
| 44 |
-
# Popularity Metrics
|
| 45 |
-
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False, category="Popularity Metrics")])
|
| 46 |
-
|
| 47 |
-
# Revision and Availability
|
| 48 |
-
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, category="Revision and Availability")])
|
| 49 |
-
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, category="Revision and Availability", hidden=False)])
|
| 50 |
|
| 51 |
# We use make_dataclass to dynamically fill the scores from Tasks
|
| 52 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
|
|
|
| 27 |
# Model Information
|
| 28 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, category="Model Information", never_hidden=True)])
|
| 29 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, category="Model Information", never_hidden=True)])
|
| 30 |
+
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True, category="Model Information")])
|
| 31 |
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False, category="Model Information")])
|
| 32 |
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False, category="Model Information")])
|
| 33 |
+
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, category="Model Information", hidden=True)])
|
| 34 |
+
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False, category="Model Information")])
|
| 35 |
+
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False, category="Model Information")])
|
| 36 |
+
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False, category="Model Information")])
|
| 37 |
+
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False, category="Model Information")])
|
| 38 |
+
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, category="Model Information")])
|
| 39 |
+
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, category="Model Information", hidden=False)])
|
| 40 |
|
|
|
|
|
|
|
| 41 |
for task in Tasks:
|
| 42 |
+
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True, category=task.value.category)])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
# We use make_dataclass to dynamically fill the scores from Tasks
|
| 45 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|