Linly-Talker / api /llm_client.py
weismart1807's picture
Upload folder using huggingface_hub
e90b704 verified
raw
history blame
1.83 kB
import os
import requests
llm_service_host = os.environ.get("LLM_SERVICE_HOST", "localhost")
llm_service_port = os.environ.get("LLM_SERVICE_PORT", 8002)
# API endpoint URLs
CHANGE_MODEL_URL = f"http://{llm_service_host}:{llm_service_port}/llm_change_model/"
LLM_RESPONSE_URL = f"http://{llm_service_host}:{llm_service_port}/llm_response/"
def change_model(model_name, gemini_apikey='', openai_apikey='', proxy_url=None):
"""请求更换LLM模型"""
params = {
"model_name": model_name,
"gemini_apikey": gemini_apikey,
"openai_apikey": openai_apikey,
"proxy_url": proxy_url,
}
response = requests.post(CHANGE_MODEL_URL, params=params)
if response.status_code == 200:
print(f"模型更换成功: {response.json()}")
else:
print(f"模型更换失败: {response.status_code}, {response.text}")
def request_llm_response(payload):
"""请求LLM生成回答"""
response = requests.post(LLM_RESPONSE_URL, json=payload)
if response.status_code == 200:
print(f"LLM 回复成功: {response.json()}")
else:
print(f"LLM 回复失败: {response.status_code}, {response.text}")
if __name__ == "__main__":
# 要测试的模型列表
models = [
# "GPT4Free",
"Qwen",
]
# 循环更换模型并生成LLM回复
for model_name in models:
print(f"切换到模型: {model_name}")
change_model(model_name, openai_apikey="your_openai_api_key")
# 请求LLM生成回答
payload = {
"question": "请问什么是FastAPI?",
"model_name": model_name,
"gemini_apikey": "",
"openai_apikey": "your_openai_api_key",
# "proxy_url": None
}
request_llm_response(payload)
print("\n" + "-"*50 + "\n")