Spaces:
Paused
Paused
| title: Zen Training | |
| emoji: π§ | |
| colorFrom: blue | |
| colorTo: purple | |
| sdk: gradio | |
| sdk_version: 5.41.1 | |
| app_file: app.py | |
| pinned: true | |
| license: apache-2.0 | |
| hardware: a10g-large | |
| # π§ Zen Training Space | |
| **Unified Training Platform for All Zen Models** | |
| Train any Zen model with any dataset combination from HuggingFace. Everything runs directly from HF datasets - no local storage needed! | |
| ## π― Features | |
| ### Supported Models | |
| **Language Models:** | |
| - `zen-nano` (0.6B) - Edge deployment | |
| - `zen-eco` (4B) - Balanced performance | |
| - `zen-omni` (7B) - Multi-task | |
| - `zen-coder` (14B) - Code generation | |
| - `zen-next` (32B) - Frontier performance | |
| **Vision-Language Models:** | |
| - `zen-vl-4b` - Efficient VL with function calling | |
| - `zen-vl-8b` - Enhanced VL capabilities | |
| - `zen-vl-30b` - Maximum VL performance | |
| ### Supported Datasets | |
| **Agent Training (ADP):** | |
| - AgentTuning OS/KG/DB (~15k samples) | |
| - Synatra (99k agent trajectories) | |
| - Code Feedback (66k samples) | |
| - Go Browse (27k web interactions) | |
| **Function Calling:** | |
| - xLAM 60k (Salesforce high-quality function calling) | |
| **Coding:** | |
| - Magicoder-OSS-Instruct (75k code samples) | |
| - CodeFeedback-Filtered (157k code instructions) | |
| - Evol-Instruct-Code (80k evolved code complexity) | |
| **Advanced Agentic:** | |
| - AgentInstruct (1M agent trajectories from Microsoft) | |
| - ToolBench (16k tool use examples) | |
| - WebArena (2k web navigation tasks) | |
| **Instruction Tuning:** | |
| - Alpaca (52k instruction samples) | |
| - OpenOrca (4.2M reasoning-focused instructions) | |
| ## π How to Use | |
| 1. **Select Model**: Choose from language or vision-language models | |
| 2. **Select Datasets**: Check multiple datasets to combine them | |
| 3. **Configure Training**: Set epochs, batch size, learning rate, max samples | |
| 4. **Set Output Repo**: Specify HuggingFace repo for trained model | |
| 5. **Start Training**: Click the button and monitor logs | |
| ## βοΈ Training Configuration | |
| ### Recommended Settings | |
| **4B Models (A10G - 24GB):** | |
| - Batch Size: 1-2 | |
| - Max Samples: 10,000-30,000 | |
| - Time: 4-8 hours | |
| - Cost: ~$3-5 | |
| **8B Models (A100 - 40GB):** | |
| - Batch Size: 2-4 | |
| - Max Samples: 30,000-50,000 | |
| - Time: 8-12 hours | |
| - Cost: ~$15-20 | |
| **32B Models (A100 - 80GB):** | |
| - Batch Size: 1-2 | |
| - Max Samples: 50,000-100,000 | |
| - Time: 20-30 hours | |
| - Cost: ~$50-80 | |
| ## π Dataset Combinations | |
| ### For Agent Training: | |
| ``` | |
| ADP Synatra (80%) + xLAM (20%) | |
| = Strong agent + quality function calling | |
| ``` | |
| ### For Code Models: | |
| ``` | |
| Code Feedback (70%) + Alpaca (30%) | |
| = Code expertise + general instruction following | |
| ``` | |
| ### For VL Models: | |
| ``` | |
| ADP (all configs) + xLAM | |
| = Complete vision-language agent training | |
| ``` | |
| ## π Requirements | |
| - HuggingFace Pro account (for GPU access) | |
| - Write access to output repository | |
| - HF_TOKEN secret set in Space settings | |
| ## π‘ Tips | |
| 1. **Start Small**: Test with 1,000 samples first | |
| 2. **Mix Datasets**: Combine complementary datasets for best results | |
| 3. **Monitor Logs**: Watch for OOM errors and adjust batch size | |
| 4. **Save Often**: Lower save_steps for longer training runs | |
| ## π Resources | |
| - **Website**: https://zenlm.org | |
| - **GitHub**: https://github.com/zenlm | |
| - **Models**: https://huggingface.co/zenlm | |
| - **Datasets**: | |
| - [ADP](https://huggingface.co/datasets/neulab/agent-data-collection) | |
| - [xLAM](https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k) | |
| ## π License | |
| Apache 2.0 | |
| ## π Citations | |
| ```bibtex | |
| @software{zen-training-2025, | |
| title={Zen Training: Unified Training Platform for Zen Models}, | |
| author={Zen AI Team}, | |
| year={2025}, | |
| url={https://huggingface.co/spaces/zenlm/zen-training} | |
| } | |
| @article{adp2024, | |
| title={Agent Data Protocol}, | |
| author={NeuLab}, | |
| journal={arXiv preprint arXiv:2510.24702}, | |
| year={2024} | |
| } | |
| @dataset{xlam2024, | |
| title={xLAM Function Calling Dataset}, | |
| author={Salesforce Research}, | |
| year={2024} | |
| } | |
| ``` | |
| # v1.1 | |