HPML-EgoQA-Baseline

This is a finetuned version of LLaVA-OneVision-Qwen2-7B-OV for egocentric vision-language tasks.

Table of Contents

  1. Model Summary
  2. Use
  3. Limitations
  4. Training
  5. License
  6. Citation

Model Summary

This model is a finetuned version of LLaVA-OneVision-Qwen2-7B-OV, fine-tuned on EgoIT-99K and Ego4D-like datasets for egocentric video question answering tasks. The base model is a 7B parameter multimodal model based on Qwen2 language model with a context window of 32K tokens, capable of understanding images, multi-image, and videos.

  • Base Model: lmms-lab/llava-onevision-qwen2-7b-ov
  • Finetuning Dataset: EgoIT-99K and Ego4D
  • Languages: English
  • Project: HPML (High-Performance Machine Learning) Project
  • Team Members: Sunidhi Tandel, Rahil, and team
  • Institution: HPML Project

Use

Intended use

This model is finetuned on EgoIT-99K and Ego4D datasets for egocentric vision-language understanding tasks, particularly video question answering from first-person perspective. The model inherits the base model's ability to interact with images, multi-image and videos, with enhanced capabilities for egocentric video understanding.

Feel free to share your generations in the Community tab!

Generation

We provide the simple generation process for using our model. For more details, you could refer to Github.

# pip install git+https://github.com/LLaVA-VL/LLaVA-NeXT.git
from llava.model.builder import load_pretrained_model
from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
from llava.conversation import conv_templates, SeparatorStyle

from PIL import Image
import requests
import copy
import torch

import sys
import warnings

warnings.filterwarnings("ignore")
pretrained = "sunidhitandel/hpml-egoqa-baseline"  # Finetuned model
model_name = "llava_qwen"
device = "cuda"
device_map = "auto"
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, device_map=device_map)  # Add any other thing you want to pass in llava_model_args

model.eval()

url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true"
image = Image.open(requests.get(url, stream=True).raw)
image_tensor = process_images([image], image_processor, model.config)
image_tensor = [_image.to(dtype=torch.float16, device=device) for _image in image_tensor]

conv_template = "qwen_1_5"  # Make sure you use correct chat template for different models
question = DEFAULT_IMAGE_TOKEN + "\nWhat is shown in this image?"
conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()

input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
image_sizes = [image.size]


cont = model.generate(
    input_ids,
    images=image_tensor,
    image_sizes=image_sizes,
    do_sample=False,
    temperature=0,
    max_new_tokens=4096,
)
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)
print(text_outputs)

Training

Base Model

This model is finetuned from LLaVA-OneVision-Qwen2-7B-OV, which was trained on:

  • Architecture: SO400M + Qwen2
  • Pretraining Stage: LCS-558K, 1 epoch, projector
  • Mid Stage: A mixture of 4.7M high-quality synthetic data, 1 epoch, full model
  • Final-Image Stage: A mixture of 3.6M single-image data, 1 epoch, full model
  • OneVision Stage: A mixture of 1.6M single-image/multi-image/video data, 1 epoch, full model

Finetuning

  • Base Model: lmms-lab/llava-onevision-qwen2-7b-ov
  • Finetuning Dataset: EgoIT-99K and Ego4D (egocentric video QA data)
  • Task: Egocentric video question answering
  • Precision: bfloat16
  • Method: Full fine-tuning / LoRA (depending on configuration)

Hardware & Software

Citation

If you use this finetuned model, please cite both the base model and this work:

@article{li2024llavaonevision,
      title={LLaVA-OneVision},
      author={Li, Bo and others},
      journal={arXiv preprint arXiv:2408.03326},
      year={2024}
}

@misc{hpml-egoqa-baseline,
      title={HPML-EgoQA-Baseline: Finetuned LLaVA-OneVision for Egocentric Video QA},
      author={Tandel, Sunidhi and Rahil and HPML Project Team},
      year={2024},
      howpublished={\url{https://huggingface.co/sunidhitandel/hpml-egoqa-baseline}},
      note={HPML Project - High-Performance Machine Learning for Egocentric Vision}
}

Acknowledgments

This work is part of the HPML (High-Performance Machine Learning) Project. We thank the LLaVA-OneVision team for providing the base model and the EgoIT-99K dataset contributors.

Team Members:

  • Sunidhi Tandel
  • Rahil
  • HPML Project Team
Downloads last month
11
Safetensors
Model size
8B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for sunidhitandel/hpml-egoqa-baseline

Finetuned
(16)
this model

Dataset used to train sunidhitandel/hpml-egoqa-baseline

Evaluation results