metadata
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
model-index:
- name: nci-technique-classifier-v5.2
results: []
nci-technique-classifier-v5.2
This model is a fine-tuned version of answerdotai/ModernBERT-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0173
- Micro F1: 0.7718
- Macro F1: 0.5789
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Micro F1 | Macro F1 |
|---|---|---|---|---|---|
| 0.0275 | 0.1570 | 200 | 0.0272 | 0.6634 | 0.2831 |
| 0.0256 | 0.3140 | 400 | 0.0238 | 0.6844 | 0.3147 |
| 0.0211 | 0.4710 | 600 | 0.0226 | 0.7276 | 0.2792 |
| 0.0224 | 0.6279 | 800 | 0.0206 | 0.7140 | 0.4159 |
| 0.0198 | 0.7849 | 1000 | 0.0203 | 0.7180 | 0.4403 |
| 0.0175 | 0.9419 | 1200 | 0.0192 | 0.7481 | 0.4333 |
| 0.018 | 1.0989 | 1400 | 0.0190 | 0.7320 | 0.4845 |
| 0.017 | 1.2559 | 1600 | 0.0191 | 0.7199 | 0.4723 |
| 0.0165 | 1.4129 | 1800 | 0.0188 | 0.7597 | 0.4633 |
| 0.0165 | 1.5699 | 2000 | 0.0182 | 0.7434 | 0.5247 |
| 0.0167 | 1.7268 | 2200 | 0.0183 | 0.7345 | 0.5005 |
| 0.0167 | 1.8838 | 2400 | 0.0182 | 0.7629 | 0.5162 |
| 0.0143 | 2.0408 | 2600 | 0.0180 | 0.7493 | 0.5557 |
| 0.016 | 2.1978 | 2800 | 0.0183 | 0.7588 | 0.5513 |
| 0.0157 | 2.3548 | 3000 | 0.0185 | 0.7663 | 0.5457 |
| 0.0157 | 2.5118 | 3200 | 0.0183 | 0.7665 | 0.5756 |
| 0.0146 | 2.6688 | 3400 | 0.0179 | 0.7641 | 0.5885 |
| 0.0123 | 2.8257 | 3600 | 0.0182 | 0.7719 | 0.5734 |
| 0.0136 | 2.9827 | 3800 | 0.0179 | 0.7682 | 0.5952 |
Framework versions
- Transformers 4.57.3
- Pytorch 2.9.1+cu128
- Datasets 4.4.1
- Tokenizers 0.22.1