Emoji-Fused Sentiment Analysis BERT (94% Accuracy)

Official Model from Scientific Reports (2025)
Paper: Sentiment analysis of emoji fused reviews using machine learning and Bert
DOI: https://doi.org/10.1038/s41598-025-92286-0

Authors: Amit Khan, Dipankar Majumdar, Bikromadittya Mondal

This is the official model that achieved 94% accuracy by preserving and enhancing emojis using the copyrighted EMOJIXT dictionary β€” instead of removing them like most models do.


Key Innovation

We replace emojis with sentiment-rich words:

  • Happy emoji β†’ happy joyful
  • Crying emoji β†’ crying sad
  • Heart emoji β†’ love adore
  • Thumbs up emoji β†’ thumbs up good

Result: +9% accuracy gain over state-of-the-art baselines.


Labels

Label Sentiment
0 Negative
1 Neutral
2 Positive

Usage

from transformers import pipeline

classifier = pipeline("text-classification", model="tanzeelabbas114/emojibert-sentiment-analysis")

print(classifier("flight delayed again crying sad")) 
# β†’ LABEL_0 (Negative)

print(classifier("best airline ever love adore happy joyful"))
# β†’ LABEL_2 (Positive)

Performance

  • Accuracy: 94%
  • Dataset: Twitter US Airline Sentiment (tweet_eval)
  • Baseline Improvement: +11% over BERT without emoji handling

Citation

@article{khan2025sentiment,
  title={{Sentiment analysis of emoji fused reviews using machine learning and Bert}},
  author={Khan, Amit and Majumdar, Dipankar and Mondal, Bikromadittya},
  journal={Scientific Reports},
  volume={15},
  pages={7538},
  year={2025},
  doi={10.1038/s41598-025-92286-0}
}

Reproduced & uploaded by tanzeelabbas114 β€” making published research openly accessible!

Downloads last month
53
Safetensors
Model size
0.1B params
Tensor type
F32
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Dataset used to train tanzeelabbas114/emojibert-sentiment-analysis

Space using tanzeelabbas114/emojibert-sentiment-analysis 1