Emoji-Fused Sentiment Analysis BERT (94% Accuracy)
Official Model from Scientific Reports (2025)
Paper: Sentiment analysis of emoji fused reviews using machine learning and Bert
DOI: https://doi.org/10.1038/s41598-025-92286-0
Authors: Amit Khan, Dipankar Majumdar, Bikromadittya Mondal
This is the official model that achieved 94% accuracy by preserving and enhancing emojis using the copyrighted EMOJIXT dictionary β instead of removing them like most models do.
Key Innovation
We replace emojis with sentiment-rich words:
- Happy emoji β happy joyful
- Crying emoji β crying sad
- Heart emoji β love adore
- Thumbs up emoji β thumbs up good
Result: +9% accuracy gain over state-of-the-art baselines.
Labels
| Label | Sentiment |
|---|---|
| 0 | Negative |
| 1 | Neutral |
| 2 | Positive |
Usage
from transformers import pipeline
classifier = pipeline("text-classification", model="tanzeelabbas114/emojibert-sentiment-analysis")
print(classifier("flight delayed again crying sad"))
# β LABEL_0 (Negative)
print(classifier("best airline ever love adore happy joyful"))
# β LABEL_2 (Positive)
Performance
- Accuracy: 94%
- Dataset: Twitter US Airline Sentiment (tweet_eval)
- Baseline Improvement: +11% over BERT without emoji handling
Citation
@article{khan2025sentiment,
title={{Sentiment analysis of emoji fused reviews using machine learning and Bert}},
author={Khan, Amit and Majumdar, Dipankar and Mondal, Bikromadittya},
journal={Scientific Reports},
volume={15},
pages={7538},
year={2025},
doi={10.1038/s41598-025-92286-0}
}
Reproduced & uploaded by tanzeelabbas114 β making published research openly accessible!
- Downloads last month
- 53