SentenceTransformer based on nreimers/TinyBERT_L-4_H-312_v2

This is a sentence-transformers model finetuned from nreimers/TinyBERT_L-4_H-312_v2. It maps sentences & paragraphs to a 312-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: nreimers/TinyBERT_L-4_H-312_v2
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 312 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertModel'})
  (1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("tomaarsen/TinyBERT_L-4_H-312_v2-distilled-from-stsb-roberta-base-v2-L2")
# Run inference
sentences = [
    'A small group of children are standing in a classroom and one of them has a foot in a trashcan, which also has a rope leading out of it.',
    'Some men with jerseys are in a bar, watching a soccer match.',
    'There are two people running around a track in lane three and the one wearing a blue shirt with a green thing over the eyes is just barely ahead of the guy wearing an orange shirt and sunglasses.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 312]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.1114, 0.1211],
#         [0.1114, 1.0000, 0.3643],
#         [0.1211, 0.3643, 1.0000]])

Evaluation

Metrics

Semantic Similarity

Metric sts-dev sts-test
pearson_cosine 0.7998 0.7475
spearman_cosine 0.8136 0.75

Knowledge Distillation

Metric Value
negative_mse -50.6792

Training Details

Training Dataset

Unnamed Dataset

  • Size: 200,000 training samples
  • Columns: sentence and label
  • Approximate statistics based on the first 1000 samples:
    sentence label
    type string list
    details
    • min: 4 tokens
    • mean: 12.24 tokens
    • max: 52 tokens
    • size: 312 elements
  • Samples:
    sentence label
    A person on a horse jumps over a broken down airplane. [0.029216572642326355, 0.7606895565986633, -2.639708995819092, 1.5909428596496582, 1.2897400856018066, ...]
    Children smiling and waving at camera [-2.8437485694885254, 2.944169282913208, 7.142611503601074, 5.286141395568848, -2.155975341796875, ...]
    A boy is jumping on skateboard in the middle of a red bridge. [2.7921977043151855, 3.262112617492676, 1.0734096765518188, 6.316248893737793, -1.0134869813919067, ...]
  • Loss: MSELoss

Evaluation Dataset

Unnamed Dataset

  • Size: 10,000 evaluation samples
  • Columns: sentence and label
  • Approximate statistics based on the first 1000 samples:
    sentence label
    type string list
    details
    • min: 5 tokens
    • mean: 13.23 tokens
    • max: 57 tokens
    • size: 312 elements
  • Samples:
    sentence label
    Two women are embracing while holding to go packages. [-6.028911590576172, -2.3896284103393555, 2.2538001537323, -2.044457197189331, 1.669250726699829, ...]
    Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. [-1.9341195821762085, 0.6948365569114685, 2.5149948596954346, 3.9593544006347656, -3.2706212997436523, ...]
    A man selling donuts to a customer during a world exhibition event held in the city of Angeles [3.196415662765503, 3.1836068630218506, -0.26187384128570557, -2.4298267364501953, 3.2045652866363525, ...]
  • Loss: MSELoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 0.0001
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 0.0001
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss Validation Loss sts-dev_spearman_cosine negative_mse sts-test_spearman_cosine
0.032 100 16.5376 - - - -
0.064 200 15.6489 - - - -
0.096 300 14.5959 - - - -
0.128 400 13.7611 - - - -
0.16 500 13.2159 13.9388 0.7559 -63.5636 -
0.192 600 12.8215 - - - -
0.224 700 12.4917 - - - -
0.256 800 12.2748 - - - -
0.288 900 12.009 - - - -
0.32 1000 11.7972 13.1279 0.7896 -57.2613 -
0.352 1100 11.6088 - - - -
0.384 1200 11.459 - - - -
0.416 1300 11.3065 - - - -
0.448 1400 11.1917 - - - -
0.48 1500 11.1288 12.6637 0.8021 -53.8425 -
0.512 1600 10.9378 - - - -
0.544 1700 10.8963 - - - -
0.576 1800 10.8034 - - - -
0.608 1900 10.7124 - - - -
0.64 2000 10.6427 12.4148 0.8092 -52.1864 -
0.672 2100 10.6062 - - - -
0.704 2200 10.5628 - - - -
0.736 2300 10.5185 - - - -
0.768 2400 10.4376 - - - -
0.8 2500 10.3779 12.2752 0.8115 -51.3012 -
0.832 2600 10.3268 - - - -
0.864 2700 10.323 - - - -
0.896 2800 10.2904 - - - -
0.928 2900 10.2949 - - - -
0.96 3000 10.2858 12.187 0.8136 -50.6792 -
0.992 3100 10.245 - - - -
-1 -1 - - - - 0.7500
  • The bold row denotes the saved checkpoint.

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.011 kWh
  • Carbon Emitted: 0.003 kg of CO2
  • Hours Used: 0.061 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 5.2.0.dev0
  • Transformers: 4.53.3
  • PyTorch: 2.8.0+cu128
  • Accelerate: 1.6.0
  • Datasets: 4.2.0
  • Tokenizers: 0.21.4

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MSELoss

@inproceedings{reimers-2020-multilingual-sentence-bert,
    title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2020",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/2004.09813",
}
Downloads last month
11
Safetensors
Model size
14.4M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for tomaarsen/TinyBERT_L-4_H-312_v2-distilled-from-stsb-roberta-base-v2-L2

Finetuned
(5)
this model

Evaluation results