metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sparse-encoder
- sparse
- splade
- generated_from_trainer
- dataset_size:99000
- loss:SpladeLoss
- loss:SparseMultipleNegativesRankingLoss
- loss:FlopsLoss
base_model: distilbert/distilbert-base-uncased
widget:
- text: >-
The term emergent literacy signals a belief that, in a literate society,
young children even one and two year olds, are in the process of becoming
literate”. ... Gray (1956:21) notes: Functional literacy is used for the
training of adults to 'meet independently the reading and writing demands
placed on them'.
- text: >-
Rey is seemingly confirmed as being The Chosen One per a quote by a
Lucasfilm production designer who worked on The Rise of Skywalker.
- text: are union gun safes fireproof?
- text: >-
Fruit is an essential part of a healthy diet — and may aid weight loss.
Most fruits are low in calories while high in nutrients and fiber, which
can boost your fullness. Keep in mind that it's best to eat fruits whole
rather than juiced. What's more, simply eating fruit is not the key to
weight loss.
- text: >-
Treatment of suspected bacterial infection is with antibiotics, such as
amoxicillin/clavulanate or doxycycline, given for 5 to 7 days for acute
sinusitis and for up to 6 weeks for chronic sinusitis.
datasets:
- sentence-transformers/gooaq
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
- query_active_dims
- query_sparsity_ratio
- corpus_active_dims
- corpus_sparsity_ratio
co2_eq_emissions:
emissions: 13.27850984546157
energy_consumed: 0.03416115647838594
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.142
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: splade-distilbert-base-uncased trained on GooAQ
results:
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: dot_accuracy@1
value: 0.3
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.48
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.62
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.72
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.3
name: Dot Precision@1
- type: dot_precision@3
value: 0.16
name: Dot Precision@3
- type: dot_precision@5
value: 0.124
name: Dot Precision@5
- type: dot_precision@10
value: 0.07200000000000001
name: Dot Precision@10
- type: dot_recall@1
value: 0.3
name: Dot Recall@1
- type: dot_recall@3
value: 0.48
name: Dot Recall@3
- type: dot_recall@5
value: 0.62
name: Dot Recall@5
- type: dot_recall@10
value: 0.72
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.4923029036903167
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4212222222222222
name: Dot Mrr@10
- type: dot_map@100
value: 0.4327140646742442
name: Dot Map@100
- type: query_active_dims
value: 129.6999969482422
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9957506062201611
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 389.0450134277344
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9872536198994911
name: Corpus Sparsity Ratio
- type: dot_accuracy@1
value: 0.32
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.48
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.62
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.7
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.32
name: Dot Precision@1
- type: dot_precision@3
value: 0.16
name: Dot Precision@3
- type: dot_precision@5
value: 0.124
name: Dot Precision@5
- type: dot_precision@10
value: 0.07
name: Dot Precision@10
- type: dot_recall@1
value: 0.32
name: Dot Recall@1
- type: dot_recall@3
value: 0.48
name: Dot Recall@3
- type: dot_recall@5
value: 0.62
name: Dot Recall@5
- type: dot_recall@10
value: 0.7
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.497755451311688
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4339126984126984
name: Dot Mrr@10
- type: dot_map@100
value: 0.44682157418631346
name: Dot Map@100
- type: query_active_dims
value: 121.5999984741211
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9960159885173278
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 397.7707824707031
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9869677353230226
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNFCorpus
type: NanoNFCorpus
metrics:
- type: dot_accuracy@1
value: 0.36
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.44
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.46
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.54
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.36
name: Dot Precision@1
- type: dot_precision@3
value: 0.2733333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.21600000000000003
name: Dot Precision@5
- type: dot_precision@10
value: 0.182
name: Dot Precision@10
- type: dot_recall@1
value: 0.016695854443026216
name: Dot Recall@1
- type: dot_recall@3
value: 0.03106456335603726
name: Dot Recall@3
- type: dot_recall@5
value: 0.039511512430362564
name: Dot Recall@5
- type: dot_recall@10
value: 0.05434224491570579
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.21590295298422338
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.41285714285714287
name: Dot Mrr@10
- type: dot_map@100
value: 0.07349060309007502
name: Dot Map@100
- type: query_active_dims
value: 221.5399932861328
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9927416292088942
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 851.602783203125
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9720987227834637
name: Corpus Sparsity Ratio
- type: dot_accuracy@1
value: 0.32
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.42
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.48
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.54
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.32
name: Dot Precision@1
- type: dot_precision@3
value: 0.25999999999999995
name: Dot Precision@3
- type: dot_precision@5
value: 0.22399999999999998
name: Dot Precision@5
- type: dot_precision@10
value: 0.184
name: Dot Precision@10
- type: dot_recall@1
value: 0.011195854443026216
name: Dot Recall@1
- type: dot_recall@3
value: 0.0305213668117608
name: Dot Recall@3
- type: dot_recall@5
value: 0.04137763819101165
name: Dot Recall@5
- type: dot_recall@10
value: 0.054323362586038954
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.21092767617388347
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.388079365079365
name: Dot Mrr@10
- type: dot_map@100
value: 0.07135787831660151
name: Dot Map@100
- type: query_active_dims
value: 199.74000549316406
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9934558677185911
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 879.7700805664062
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9711758705010679
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: dot_accuracy@1
value: 0.24
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.5
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.56
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.7
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.24
name: Dot Precision@1
- type: dot_precision@3
value: 0.16666666666666663
name: Dot Precision@3
- type: dot_precision@5
value: 0.11200000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.07
name: Dot Precision@10
- type: dot_recall@1
value: 0.23
name: Dot Recall@1
- type: dot_recall@3
value: 0.46
name: Dot Recall@3
- type: dot_recall@5
value: 0.52
name: Dot Recall@5
- type: dot_recall@10
value: 0.64
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.43543954013123615
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.3874365079365079
name: Dot Mrr@10
- type: dot_map@100
value: 0.37672138136649846
name: Dot Map@100
- type: query_active_dims
value: 103.12000274658203
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9966214532879044
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 603.1914672851562
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9802374855092997
name: Corpus Sparsity Ratio
- type: dot_accuracy@1
value: 0.28
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.48
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.56
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.72
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.28
name: Dot Precision@1
- type: dot_precision@3
value: 0.16
name: Dot Precision@3
- type: dot_precision@5
value: 0.11599999999999999
name: Dot Precision@5
- type: dot_precision@10
value: 0.07400000000000001
name: Dot Precision@10
- type: dot_recall@1
value: 0.26
name: Dot Recall@1
- type: dot_recall@3
value: 0.45
name: Dot Recall@3
- type: dot_recall@5
value: 0.52
name: Dot Recall@5
- type: dot_recall@10
value: 0.67
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.45351079818093326
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.40330158730158727
name: Dot Mrr@10
- type: dot_map@100
value: 0.3886037227739609
name: Dot Map@100
- type: query_active_dims
value: 97.54000091552734
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.996804272298161
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 625.50048828125
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9795065694161179
name: Corpus Sparsity Ratio
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: dot_accuracy@1
value: 0.3
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.47333333333333333
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.5466666666666667
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.6533333333333333
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.3
name: Dot Precision@1
- type: dot_precision@3
value: 0.19999999999999998
name: Dot Precision@3
- type: dot_precision@5
value: 0.1506666666666667
name: Dot Precision@5
- type: dot_precision@10
value: 0.108
name: Dot Precision@10
- type: dot_recall@1
value: 0.18223195148100876
name: Dot Recall@1
- type: dot_recall@3
value: 0.32368818778534575
name: Dot Recall@3
- type: dot_recall@5
value: 0.39317050414345417
name: Dot Recall@5
- type: dot_recall@10
value: 0.47144741497190196
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.3812151322685921
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4071719576719577
name: Dot Mrr@10
- type: dot_map@100
value: 0.2943086830436059
name: Dot Map@100
- type: query_active_dims
value: 151.45333099365234
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9950378962389864
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 576.610088197042
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9811083779504279
name: Corpus Sparsity Ratio
- type: dot_accuracy@1
value: 0.3591522762951334
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.5289795918367346
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.6121507064364207
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.7046153846153848
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.3591522762951334
name: Dot Precision@1
- type: dot_precision@3
value: 0.2408895866038723
name: Dot Precision@3
- type: dot_precision@5
value: 0.19369544740973316
name: Dot Precision@5
- type: dot_precision@10
value: 0.14295133437990584
name: Dot Precision@10
- type: dot_recall@1
value: 0.20232124722865225
name: Dot Recall@1
- type: dot_recall@3
value: 0.31785179276573494
name: Dot Recall@3
- type: dot_recall@5
value: 0.3843850663750471
name: Dot Recall@5
- type: dot_recall@10
value: 0.4668945859961475
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.4149846764819604
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.46609898831327395
name: Dot Mrr@10
- type: dot_map@100
value: 0.34193786183886477
name: Dot Map@100
- type: query_active_dims
value: 207.32511528026893
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9932073548496079
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 571.211992111076
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9812852371367842
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoClimateFEVER
type: NanoClimateFEVER
metrics:
- type: dot_accuracy@1
value: 0.18
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.32
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.4
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.52
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.18
name: Dot Precision@1
- type: dot_precision@3
value: 0.12
name: Dot Precision@3
- type: dot_precision@5
value: 0.08800000000000001
name: Dot Precision@5
- type: dot_precision@10
value: 0.06199999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.09166666666666666
name: Dot Recall@1
- type: dot_recall@3
value: 0.16333333333333333
name: Dot Recall@3
- type: dot_recall@5
value: 0.19
name: Dot Recall@5
- type: dot_recall@10
value: 0.24733333333333335
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.20663969061747678
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.2785238095238095
name: Dot Mrr@10
- type: dot_map@100
value: 0.16465402486405106
name: Dot Map@100
- type: query_active_dims
value: 243.5399932861328
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9920208376487081
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 704.9307250976562
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.976904176492443
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoDBPedia
type: NanoDBPedia
metrics:
- type: dot_accuracy@1
value: 0.54
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.74
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.82
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.9
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.54
name: Dot Precision@1
- type: dot_precision@3
value: 0.4666666666666666
name: Dot Precision@3
- type: dot_precision@5
value: 0.43200000000000005
name: Dot Precision@5
- type: dot_precision@10
value: 0.41200000000000003
name: Dot Precision@10
- type: dot_recall@1
value: 0.055010013413515094
name: Dot Recall@1
- type: dot_recall@3
value: 0.11580740263202617
name: Dot Recall@3
- type: dot_recall@5
value: 0.15730927980831147
name: Dot Recall@5
- type: dot_recall@10
value: 0.2871622888330674
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.49104405587222694
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.6685238095238095
name: Dot Mrr@10
- type: dot_map@100
value: 0.34192873131869617
name: Dot Map@100
- type: query_active_dims
value: 180.3000030517578
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.994092785431762
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 549.1513671875
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9820080149666633
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoFEVER
type: NanoFEVER
metrics:
- type: dot_accuracy@1
value: 0.54
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.68
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.76
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.84
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.54
name: Dot Precision@1
- type: dot_precision@3
value: 0.22666666666666666
name: Dot Precision@3
- type: dot_precision@5
value: 0.15600000000000003
name: Dot Precision@5
- type: dot_precision@10
value: 0.08599999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.53
name: Dot Recall@1
- type: dot_recall@3
value: 0.6466666666666666
name: Dot Recall@3
- type: dot_recall@5
value: 0.7266666666666666
name: Dot Recall@5
- type: dot_recall@10
value: 0.8066666666666665
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6669183841429774
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.6358571428571428
name: Dot Mrr@10
- type: dot_map@100
value: 0.6246746886992789
name: Dot Map@100
- type: query_active_dims
value: 255.33999633789062
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9916342311664409
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 861.5084228515625
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9717741818081527
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoFiQA2018
type: NanoFiQA2018
metrics:
- type: dot_accuracy@1
value: 0.18
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.36
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.42
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.52
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.18
name: Dot Precision@1
- type: dot_precision@3
value: 0.15333333333333332
name: Dot Precision@3
- type: dot_precision@5
value: 0.12800000000000003
name: Dot Precision@5
- type: dot_precision@10
value: 0.086
name: Dot Precision@10
- type: dot_recall@1
value: 0.10933333333333334
name: Dot Recall@1
- type: dot_recall@3
value: 0.23572222222222222
name: Dot Recall@3
- type: dot_recall@5
value: 0.2821111111111111
name: Dot Recall@5
- type: dot_recall@10
value: 0.35740476190476195
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.2731926938394576
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.28719047619047616
name: Dot Mrr@10
- type: dot_map@100
value: 0.22109942326282112
name: Dot Map@100
- type: query_active_dims
value: 88.83999633789062
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9970893127469402
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 414.41741943359375
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9864223373490076
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoHotpotQA
type: NanoHotpotQA
metrics:
- type: dot_accuracy@1
value: 0.66
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.72
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.78
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.9
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.66
name: Dot Precision@1
- type: dot_precision@3
value: 0.33333333333333326
name: Dot Precision@3
- type: dot_precision@5
value: 0.23199999999999996
name: Dot Precision@5
- type: dot_precision@10
value: 0.13799999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.33
name: Dot Recall@1
- type: dot_recall@3
value: 0.5
name: Dot Recall@3
- type: dot_recall@5
value: 0.58
name: Dot Recall@5
- type: dot_recall@10
value: 0.69
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6058525828428769
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.7181269841269841
name: Dot Mrr@10
- type: dot_map@100
value: 0.5210794772668003
name: Dot Map@100
- type: query_active_dims
value: 147.39999389648438
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9951706967467242
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 622.540283203125
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9796035553632422
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoQuoraRetrieval
type: NanoQuoraRetrieval
metrics:
- type: dot_accuracy@1
value: 0.4
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.58
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.72
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.82
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.4
name: Dot Precision@1
- type: dot_precision@3
value: 0.19333333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.15200000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.08599999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.3866666666666667
name: Dot Recall@1
- type: dot_recall@3
value: 0.5466666666666667
name: Dot Recall@3
- type: dot_recall@5
value: 0.6906666666666667
name: Dot Recall@5
- type: dot_recall@10
value: 0.7906666666666666
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5774223027465384
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5223333333333333
name: Dot Mrr@10
- type: dot_map@100
value: 0.5159175593795703
name: Dot Map@100
- type: query_active_dims
value: 52.779998779296875
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9982707555606023
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 59.61296081542969
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9980468854984789
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoSCIDOCS
type: NanoSCIDOCS
metrics:
- type: dot_accuracy@1
value: 0.34
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.52
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.64
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.78
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.34
name: Dot Precision@1
- type: dot_precision@3
value: 0.22
name: Dot Precision@3
- type: dot_precision@5
value: 0.18
name: Dot Precision@5
- type: dot_precision@10
value: 0.14
name: Dot Precision@10
- type: dot_recall@1
value: 0.07266666666666667
name: Dot Recall@1
- type: dot_recall@3
value: 0.13666666666666666
name: Dot Recall@3
- type: dot_recall@5
value: 0.18566666666666662
name: Dot Recall@5
- type: dot_recall@10
value: 0.2876666666666667
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.2663751860700744
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.453611111111111
name: Dot Mrr@10
- type: dot_map@100
value: 0.17985066244400083
name: Dot Map@100
- type: query_active_dims
value: 197.97999572753906
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9935135313633596
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 729.0889892578125
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9761126731781072
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoArguAna
type: NanoArguAna
metrics:
- type: dot_accuracy@1
value: 0.02
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.16
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.22
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.24
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.02
name: Dot Precision@1
- type: dot_precision@3
value: 0.05333333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.044000000000000004
name: Dot Precision@5
- type: dot_precision@10
value: 0.024000000000000004
name: Dot Precision@10
- type: dot_recall@1
value: 0.02
name: Dot Recall@1
- type: dot_recall@3
value: 0.16
name: Dot Recall@3
- type: dot_recall@5
value: 0.22
name: Dot Recall@5
- type: dot_recall@10
value: 0.24
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.1308713212722807
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.0955
name: Dot Mrr@10
- type: dot_map@100
value: 0.10586268132966514
name: Dot Map@100
- type: query_active_dims
value: 798.3800048828125
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9738424741208698
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 696.6200561523438
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9771764610395012
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoSciFact
type: NanoSciFact
metrics:
- type: dot_accuracy@1
value: 0.44
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.58
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.64
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.68
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.44
name: Dot Precision@1
- type: dot_precision@3
value: 0.20666666666666667
name: Dot Precision@3
- type: dot_precision@5
value: 0.14
name: Dot Precision@5
- type: dot_precision@10
value: 0.078
name: Dot Precision@10
- type: dot_recall@1
value: 0.415
name: Dot Recall@1
- type: dot_recall@3
value: 0.555
name: Dot Recall@3
- type: dot_recall@5
value: 0.615
name: Dot Recall@5
- type: dot_recall@10
value: 0.67
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5536377846083319
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5218888888888888
name: Dot Mrr@10
- type: dot_map@100
value: 0.5200703583453583
name: Dot Map@100
- type: query_active_dims
value: 270.4800109863281
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9911381950400915
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 766.060302734375
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9749013726907028
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoTouche2020
type: NanoTouche2020
metrics:
- type: dot_accuracy@1
value: 0.4489795918367347
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.8367346938775511
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.8979591836734694
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 1
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.4489795918367347
name: Dot Precision@1
- type: dot_precision@3
value: 0.5782312925170067
name: Dot Precision@3
- type: dot_precision@5
value: 0.5020408163265306
name: Dot Precision@5
- type: dot_precision@10
value: 0.4183673469387756
name: Dot Precision@10
- type: dot_recall@1
value: 0.028637012782604658
name: Dot Recall@1
- type: dot_recall@3
value: 0.11168898095521147
name: Dot Recall@3
- type: dot_recall@5
value: 0.168207833765178
name: Dot Recall@5
- type: dot_recall@10
value: 0.26840587129271604
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.46065286658673993
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.652437641723356
name: Dot Mrr@10
- type: dot_map@100
value: 0.34327142171812286
name: Dot Map@100
- type: query_active_dims
value: 37.918365478515625
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9987576710085015
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 507.71820068359375
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9833655002724724
name: Corpus Sparsity Ratio
splade-distilbert-base-uncased trained on GooAQ
This is a SPLADE Sparse Encoder model finetuned from distilbert/distilbert-base-uncased on the gooaq dataset using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
Model Details
Model Description
- Model Type: SPLADE Sparse Encoder
- Base model: distilbert/distilbert-base-uncased
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 30522 dimensions
- Similarity Function: Dot Product
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Sparse Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sparse Encoders on Hugging Face
Full Model Architecture
SparseEncoder(
(0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'DistilBertForMaskedLM'})
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/splade-distilbert-base-uncased-gooaq-peft-r64")
# Run inference
queries = [
"how many days for doxycycline to work on sinus infection?",
]
documents = [
'Treatment of suspected bacterial infection is with antibiotics, such as amoxicillin/clavulanate or doxycycline, given for 5 to 7 days for acute sinusitis and for up to 6 weeks for chronic sinusitis.',
'Most engagements typically have a cocktail dress code, calling for dresses at, or slightly above, knee-length and high heels. If your party states a different dress code, however, such as semi-formal or dressy-casual, you may need to dress up or down accordingly.',
'The average service life of a gas furnace is about 15 years, but the actual life span of an individual unit can vary greatly. There are a number of contributing factors that determine the age a furnace reaches: The quality of the equipment.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 30522] [3, 30522]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[90.6936, 25.1699, 31.3902]])
Evaluation
Metrics
Sparse Information Retrieval
- Datasets:
NanoMSMARCO,NanoNFCorpus,NanoNQ,NanoClimateFEVER,NanoDBPedia,NanoFEVER,NanoFiQA2018,NanoHotpotQA,NanoMSMARCO,NanoNFCorpus,NanoNQ,NanoQuoraRetrieval,NanoSCIDOCS,NanoArguAna,NanoSciFactandNanoTouche2020 - Evaluated with
SparseInformationRetrievalEvaluator
| Metric | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| dot_accuracy@1 | 0.32 | 0.32 | 0.28 | 0.18 | 0.54 | 0.54 | 0.18 | 0.66 | 0.4 | 0.34 | 0.02 | 0.44 | 0.449 |
| dot_accuracy@3 | 0.48 | 0.42 | 0.48 | 0.32 | 0.74 | 0.68 | 0.36 | 0.72 | 0.58 | 0.52 | 0.16 | 0.58 | 0.8367 |
| dot_accuracy@5 | 0.62 | 0.48 | 0.56 | 0.4 | 0.82 | 0.76 | 0.42 | 0.78 | 0.72 | 0.64 | 0.22 | 0.64 | 0.898 |
| dot_accuracy@10 | 0.7 | 0.54 | 0.72 | 0.52 | 0.9 | 0.84 | 0.52 | 0.9 | 0.82 | 0.78 | 0.24 | 0.68 | 1.0 |
| dot_precision@1 | 0.32 | 0.32 | 0.28 | 0.18 | 0.54 | 0.54 | 0.18 | 0.66 | 0.4 | 0.34 | 0.02 | 0.44 | 0.449 |
| dot_precision@3 | 0.16 | 0.26 | 0.16 | 0.12 | 0.4667 | 0.2267 | 0.1533 | 0.3333 | 0.1933 | 0.22 | 0.0533 | 0.2067 | 0.5782 |
| dot_precision@5 | 0.124 | 0.224 | 0.116 | 0.088 | 0.432 | 0.156 | 0.128 | 0.232 | 0.152 | 0.18 | 0.044 | 0.14 | 0.502 |
| dot_precision@10 | 0.07 | 0.184 | 0.074 | 0.062 | 0.412 | 0.086 | 0.086 | 0.138 | 0.086 | 0.14 | 0.024 | 0.078 | 0.4184 |
| dot_recall@1 | 0.32 | 0.0112 | 0.26 | 0.0917 | 0.055 | 0.53 | 0.1093 | 0.33 | 0.3867 | 0.0727 | 0.02 | 0.415 | 0.0286 |
| dot_recall@3 | 0.48 | 0.0305 | 0.45 | 0.1633 | 0.1158 | 0.6467 | 0.2357 | 0.5 | 0.5467 | 0.1367 | 0.16 | 0.555 | 0.1117 |
| dot_recall@5 | 0.62 | 0.0414 | 0.52 | 0.19 | 0.1573 | 0.7267 | 0.2821 | 0.58 | 0.6907 | 0.1857 | 0.22 | 0.615 | 0.1682 |
| dot_recall@10 | 0.7 | 0.0543 | 0.67 | 0.2473 | 0.2872 | 0.8067 | 0.3574 | 0.69 | 0.7907 | 0.2877 | 0.24 | 0.67 | 0.2684 |
| dot_ndcg@10 | 0.4978 | 0.2109 | 0.4535 | 0.2066 | 0.491 | 0.6669 | 0.2732 | 0.6059 | 0.5774 | 0.2664 | 0.1309 | 0.5536 | 0.4607 |
| dot_mrr@10 | 0.4339 | 0.3881 | 0.4033 | 0.2785 | 0.6685 | 0.6359 | 0.2872 | 0.7181 | 0.5223 | 0.4536 | 0.0955 | 0.5219 | 0.6524 |
| dot_map@100 | 0.4468 | 0.0714 | 0.3886 | 0.1647 | 0.3419 | 0.6247 | 0.2211 | 0.5211 | 0.5159 | 0.1799 | 0.1059 | 0.5201 | 0.3433 |
| query_active_dims | 121.6 | 199.74 | 97.54 | 243.54 | 180.3 | 255.34 | 88.84 | 147.4 | 52.78 | 197.98 | 798.38 | 270.48 | 37.9184 |
| query_sparsity_ratio | 0.996 | 0.9935 | 0.9968 | 0.992 | 0.9941 | 0.9916 | 0.9971 | 0.9952 | 0.9983 | 0.9935 | 0.9738 | 0.9911 | 0.9988 |
| corpus_active_dims | 397.7708 | 879.7701 | 625.5005 | 704.9307 | 549.1514 | 861.5084 | 414.4174 | 622.5403 | 59.613 | 729.089 | 696.6201 | 766.0603 | 507.7182 |
| corpus_sparsity_ratio | 0.987 | 0.9712 | 0.9795 | 0.9769 | 0.982 | 0.9718 | 0.9864 | 0.9796 | 0.998 | 0.9761 | 0.9772 | 0.9749 | 0.9834 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean - Evaluated with
SparseNanoBEIREvaluatorwith these parameters:{ "dataset_names": [ "msmarco", "nfcorpus", "nq" ] }
| Metric | Value |
|---|---|
| dot_accuracy@1 | 0.3 |
| dot_accuracy@3 | 0.4733 |
| dot_accuracy@5 | 0.5467 |
| dot_accuracy@10 | 0.6533 |
| dot_precision@1 | 0.3 |
| dot_precision@3 | 0.2 |
| dot_precision@5 | 0.1507 |
| dot_precision@10 | 0.108 |
| dot_recall@1 | 0.1822 |
| dot_recall@3 | 0.3237 |
| dot_recall@5 | 0.3932 |
| dot_recall@10 | 0.4714 |
| dot_ndcg@10 | 0.3812 |
| dot_mrr@10 | 0.4072 |
| dot_map@100 | 0.2943 |
| query_active_dims | 151.4533 |
| query_sparsity_ratio | 0.995 |
| corpus_active_dims | 576.6101 |
| corpus_sparsity_ratio | 0.9811 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean - Evaluated with
SparseNanoBEIREvaluatorwith these parameters:{ "dataset_names": [ "climatefever", "dbpedia", "fever", "fiqa2018", "hotpotqa", "msmarco", "nfcorpus", "nq", "quoraretrieval", "scidocs", "arguana", "scifact", "touche2020" ] }
| Metric | Value |
|---|---|
| dot_accuracy@1 | 0.3592 |
| dot_accuracy@3 | 0.529 |
| dot_accuracy@5 | 0.6122 |
| dot_accuracy@10 | 0.7046 |
| dot_precision@1 | 0.3592 |
| dot_precision@3 | 0.2409 |
| dot_precision@5 | 0.1937 |
| dot_precision@10 | 0.143 |
| dot_recall@1 | 0.2023 |
| dot_recall@3 | 0.3179 |
| dot_recall@5 | 0.3844 |
| dot_recall@10 | 0.4669 |
| dot_ndcg@10 | 0.415 |
| dot_mrr@10 | 0.4661 |
| dot_map@100 | 0.3419 |
| query_active_dims | 207.3251 |
| query_sparsity_ratio | 0.9932 |
| corpus_active_dims | 571.212 |
| corpus_sparsity_ratio | 0.9813 |
Training Details
Training Dataset
gooaq
- Dataset: gooaq at b089f72
- Size: 99,000 training samples
- Columns:
questionandanswer - Approximate statistics based on the first 1000 samples:
question answer type string string details - min: 8 tokens
- mean: 11.79 tokens
- max: 24 tokens
- min: 14 tokens
- mean: 60.02 tokens
- max: 153 tokens
- Samples:
question answer what are the 5 characteristics of a star?Key Concept: Characteristics used to classify stars include color, temperature, size, composition, and brightness.are copic markers alcohol ink?Copic Ink is alcohol-based and flammable. Keep away from direct sunlight and extreme temperatures.what is the difference between appellate term and appellate division?Appellate terms An appellate term is an intermediate appellate court that hears appeals from the inferior courts within their designated counties or judicial districts, and are intended to ease the workload on the Appellate Division and provide a less expensive forum closer to the people. - Loss:
SpladeLosswith these parameters:{ "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')", "document_regularizer_weight": 3e-05, "query_regularizer_weight": 5e-05 }
Evaluation Dataset
gooaq
- Dataset: gooaq at b089f72
- Size: 1,000 evaluation samples
- Columns:
questionandanswer - Approximate statistics based on the first 1000 samples:
question answer type string string details - min: 8 tokens
- mean: 11.93 tokens
- max: 25 tokens
- min: 14 tokens
- mean: 60.84 tokens
- max: 127 tokens
- Samples:
question answer should you take ibuprofen with high blood pressure?In general, people with high blood pressure should use acetaminophen or possibly aspirin for over-the-counter pain relief. Unless your health care provider has said it's OK, you should not use ibuprofen, ketoprofen, or naproxen sodium. If aspirin or acetaminophen doesn't help with your pain, call your doctor.how old do you have to be to work in sc?The general minimum age of employment for South Carolina youth is 14, although the state allows younger children who are performers to work in show business. If their families are agricultural workers, children younger than age 14 may also participate in farm labor.how to write a topic proposal for a research paper?['Write down the main topic of your paper. ... ', 'Write two or three short sentences under the main topic that explain why you chose that topic. ... ', 'Write a thesis sentence that states the angle and purpose of your research paper. ... ', 'List the items you will cover in the body of the paper that support your thesis statement.'] - Loss:
SpladeLosswith these parameters:{ "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')", "document_regularizer_weight": 3e-05, "query_regularizer_weight": 5e-05 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 32per_device_eval_batch_size: 32learning_rate: 2e-05num_train_epochs: 1bf16: Trueload_best_model_at_end: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 32per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 | NanoClimateFEVER_dot_ndcg@10 | NanoDBPedia_dot_ndcg@10 | NanoFEVER_dot_ndcg@10 | NanoFiQA2018_dot_ndcg@10 | NanoHotpotQA_dot_ndcg@10 | NanoQuoraRetrieval_dot_ndcg@10 | NanoSCIDOCS_dot_ndcg@10 | NanoArguAna_dot_ndcg@10 | NanoSciFact_dot_ndcg@10 | NanoTouche2020_dot_ndcg@10 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.0323 | 100 | 132.3714 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0646 | 200 | 17.6927 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.0970 | 300 | 2.8291 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1293 | 400 | 0.9365 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1616 | 500 | 0.5878 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1939 | 600 | 0.4041 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.1972 | 610 | - | 0.2847 | 0.3951 | 0.1965 | 0.3212 | 0.3043 | - | - | - | - | - | - | - | - | - | - |
| 0.2262 | 700 | 0.3624 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2586 | 800 | 0.295 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.2909 | 900 | 0.282 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3232 | 1000 | 0.2947 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3555 | 1100 | 0.2664 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3878 | 1200 | 0.2387 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.3943 | 1220 | - | 0.2030 | 0.4818 | 0.2086 | 0.4084 | 0.3663 | - | - | - | - | - | - | - | - | - | - |
| 0.4202 | 1300 | 0.2512 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4525 | 1400 | 0.2117 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.4848 | 1500 | 0.2367 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5171 | 1600 | 0.2085 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5495 | 1700 | 0.1745 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5818 | 1800 | 0.1958 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.5915 | 1830 | - | 0.1449 | 0.4978 | 0.2109 | 0.4535 | 0.3874 | - | - | - | - | - | - | - | - | - | - |
| 0.6141 | 1900 | 0.1946 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6464 | 2000 | 0.1801 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.6787 | 2100 | 0.1854 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7111 | 2200 | 0.232 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7434 | 2300 | 0.1798 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7757 | 2400 | 0.1725 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.7886 | 2440 | - | 0.1437 | 0.4885 | 0.2206 | 0.4230 | 0.3774 | - | - | - | - | - | - | - | - | - | - |
| 0.8080 | 2500 | 0.1598 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.8403 | 2600 | 0.1586 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.8727 | 2700 | 0.172 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9050 | 2800 | 0.1875 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9373 | 2900 | 0.1691 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9696 | 3000 | 0.1473 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 0.9858 | 3050 | - | 0.1358 | 0.4923 | 0.2159 | 0.4354 | 0.3812 | - | - | - | - | - | - | - | - | - | - |
| -1 | -1 | - | - | 0.4978 | 0.2109 | 0.4535 | 0.4150 | 0.2066 | 0.4910 | 0.6669 | 0.2732 | 0.6059 | 0.5774 | 0.2664 | 0.1309 | 0.5536 | 0.4607 |
- The bold row denotes the saved checkpoint.
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.034 kWh
- Carbon Emitted: 0.013 kg of CO2
- Hours Used: 0.142 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.52.4
- PyTorch: 2.7.1+cu126
- Accelerate: 1.5.1
- Datasets: 2.21.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
SpladeLoss
@misc{formal2022distillationhardnegativesampling,
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
year={2022},
eprint={2205.04733},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2205.04733},
}
SparseMultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
FlopsLoss
@article{paria2020minimizing,
title={Minimizing flops to learn efficient sparse representations},
author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
journal={arXiv preprint arXiv:2004.05665},
year={2020}
}