Llama-3.1-8B-SFT-envbench_weave_2500

This model is a fine-tuned version of meta-llama/Llama-3.1-8B on the envbench_weave_2500 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3857
  • Accuracy: 0.8937
  • Num Input Tokens Seen: 93186816

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • total_eval_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5.0

Training results

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.6.0a0+df5bbc09d1.nv24.12
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
26
Safetensors
Model size
8B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for waleko/Llama-3.1-8B-SFT-envbench_weave_2500

Finetuned
(1656)
this model