Model Card for wangzihaogithub/job-educational-parser
This model is a fine-tuned version of job-educational-parser. It has been trained using TRL.
模型任务:输入岗位描述,输出岗位中要求的学历(如 "博士、硕士、本科"),遵循从高到低
训练数据:https://huggingface.co/datasets/wangzihaogithub/job-educational-parser-dataset-08-0-0805.
例如: 输入
{
"model": "wangzihaogithub/job-educational-parser",
"messages": [
{
"role": "system",
"content": "从岗位中提取学历"
},
{
"role": "user",
"content": "游戏美术实习-原画类(26届提供转正)游戏类型&风格:欧美卡通 休闲类游戏 工作职责: 1. 配合各项目组美术需求(包括不限于原画,UI和动画类需求)的落地和整合; 2. 具有比较扎实的手绘能力,能够独立完成运营活动所需的美术设计需求; 3. 通过对主流AI产品的学习,总结提示词使用技巧,通过具体案例验证方法的有效性,协助团队建立规范化的AI应用方法论和完善AI工作流程。 岗位要求: 1.面向游戏/动画/数媒/雕塑/美术/工业设计等设计相关专业; 2.本科及以上学历; 3.2026年应届毕业生; 4.有优秀的绘画基础,会用手绘板,熟练掌握PS等2D设计软件 加分项: 1.美术院校相关专业者优先; 2.爱玩游戏者优先; 3.有相关美术设计实习或者工作经验者优先考虑; 4.性格乐观爽朗,善于表达。"
}
],
"max_tokens": 32
}
输出(固定格式):博士、硕士、本科
响应速度:100~200毫秒之间(显卡RTX3060,精度BF16)
准确率:98%, 评测集:https://huggingface.co/datasets/wangzihaogithub/job-educational-parser-dataset-08-0-0805/viewer/annotated-test.
Requirements
transformers>=4.51.0
Framework versions
- TRL: 0.19.0
- Transformers: 4.53.0
- Pytorch: 2.6.0
- Datasets: 3.6.0
- Tokenizers: 0.21.2
Quick start
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_name = "wangzihaogithub/job-educational-parser"
# 加载分词器和模型
tokenizer = AutoTokenizer.from_pretrained(model_name,
cache_dir="./cache")
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto",
cache_dir="./cache"
)
print('model load success')
messages = [
{"role": "system", "content": '从岗位中提取学历'},
{"role": "user", "content": "游戏美术实习-原画类(26届提供转正)游戏类型&风格:欧美卡通 休闲类游戏 工作职责: 1. 配合各项目组美术需求(包括不限于原画,UI和动画类需求)的落地和整合; 2. 具有比较扎实的手绘能力,能够独立完成运营活动所需的美术设计需求; 3. 通过对主流AI产品的学习,总结提示词使用技巧,通过具体案例验证方法的有效性,协助团队建立规范化的AI应用方法论和完善AI工作流程。 岗位要求: 1.面向游戏/动画/数媒/雕塑/美术/工业设计等设计相关专业; 2.本科及以上学历; 3.2026年应届毕业生; 4.有优秀的绘画基础,会用手绘板,熟练掌握PS等2D设计软件 加分项: 1.美术院校相关专业者优先; 2.爱玩游戏者优先; 3.有相关美术设计实习或者工作经验者优先考虑; 4.性格乐观爽朗,善于表达。"}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=False
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# 生成推理结果(关闭梯度计算)
with torch.inference_mode(), torch.amp.autocast('cuda'):
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32,# 输出结果为学历,不需要太多
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
use_cache=True,
do_sample=False, # 是否采样(False 为 greedy decode)
temperature=None, # 关闭
top_p=None,# 关闭
top_k=None# 关闭
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# parsing thinking content
try:
# rindex finding 151668 (</think>)
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
print(content)
Training procedure
This model was trained with SFT.
Citations
Cite TRL as:
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
- Downloads last month
- 10
Model tree for wangzihaogithub/job-educational-parser
Base model
Qwen/Qwen3-0.6B-Base