bert-finetuned-ner
This model is a fine-tuned version of bert-base-cased on the conllpp dataset. It achieves the following results on the evaluation set:
- Loss: 0.0609
- Precision: 0.9342
- Recall: 0.9505
- F1: 0.9423
- Accuracy: 0.9866
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|---|---|---|---|---|---|---|---|
| 0.0757 | 1.0 | 1756 | 0.0653 | 0.8989 | 0.9334 | 0.9158 | 0.9817 |
| 0.0341 | 2.0 | 3512 | 0.0655 | 0.9261 | 0.9431 | 0.9345 | 0.9853 |
| 0.0203 | 3.0 | 5268 | 0.0609 | 0.9342 | 0.9505 | 0.9423 | 0.9866 |
Framework versions
- Transformers 4.57.3
- Pytorch 2.9.0+cu126
- Datasets 2.16.0
- Tokenizers 0.22.1
- Downloads last month
- -
Model tree for x122418/bert-finetuned-ner
Base model
google-bert/bert-base-casedDataset used to train x122418/bert-finetuned-ner
Evaluation results
- Precision on conllppvalidation set self-reported0.934
- Recall on conllppvalidation set self-reported0.951
- F1 on conllppvalidation set self-reported0.942
- Accuracy on conllppvalidation set self-reported0.987