metadata
license: apache-2.0
language:
- en
metrics:
- accuracy
- precision
- recall
base_model:
- microsoft/deberta-v3-base
pipeline_tag: text-classification
Stock Sentiment Analysis
This model is a fine-tuned version of microsoft/deberta-v3-base for stock sentiment analysis.
Model Details
- Language: English
- Task: Text Classification (Sentiment Analysis)
- Classes: Positive, Neutral, Negative
Training
- Evaluation Metric: F1 Score
- Training Args: See
training_args.binfor details.
Usage
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("vinD27/stock_sentiment_analysis")
model = AutoModelForSequenceClassification.from_pretrained("vinD27/stock_sentiment_analysis")
text = "The stock market is performing well today."
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)
print(outputs.logits)