test_rad_bert / README.md
BarryRL's picture
Upload folder using huggingface_hub
192281a verified
metadata
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
widget:
  - text: >-
      Multiple non-calcified nodules in left lower lobe, ranging from 3-6mm.
      Follow-up CT scan recommended.
  - text: >-
      Heart size and mediastinal contours normal. Lungs clear, no consolidation
      or acute abnormality. No pleural effusion or pneumothorax. No acute
      osseous abnormalities. Small 0.5 cm calcified granuloma in right upper
      lobe, likely benign from prior infection. No acute cardiopulmonary
      disease. Incidental right upper lobe granuloma. No follow-up needed unless
      clinically indicated. nan
  - text: >-
      Patchy consolidation in RLL consistent with pneumonia. Recommend clinical
      follow-up.
  - text: >-
      Calcified granuloma in the left lower lobe, incidental finding.  Findings
      consistent with COPD exacerbation.
  - text: >-
      Moderate pleural effusion and patchy consolidation in bilateral lung
      bases.
metrics:
  - accuracy
pipeline_tag: text-classification
library_name: setfit
inference: false

SetFit

This is a SetFit model that can be used for Text Classification. A OneVsRestClassifier instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

  • Model Type: SetFit
  • Classification head: a OneVsRestClassifier instance
  • Maximum Sequence Length: 512 tokens

Model Sources

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("Moderate pleural effusion and patchy consolidation in bilateral lung bases.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 7 17.5143 53

Training Hyperparameters

  • batch_size: (8, 8)
  • num_epochs: (10, 10)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0096 1 0.1417 -
0.4808 50 0.1824 -
0.9615 100 0.1083 -
1.4423 150 0.0817 -
1.9231 200 0.0777 -
2.4038 250 0.0636 -
2.8846 300 0.0649 -
3.3654 350 0.0603 -
3.8462 400 0.0713 -
4.3269 450 0.0507 -
4.8077 500 0.0569 -
5.2885 550 0.0553 -
5.7692 600 0.0614 -
6.25 650 0.0512 -
6.7308 700 0.0559 -
7.2115 750 0.0512 -
7.6923 800 0.0464 -
8.1731 850 0.0547 -
8.6538 900 0.0455 -
9.1346 950 0.0524 -
9.6154 1000 0.0526 -

Framework Versions

  • Python: 3.11.11
  • SetFit: 1.1.2
  • Sentence Transformers: 4.0.2
  • Transformers: 4.51.2
  • PyTorch: 2.6.0
  • Datasets: 3.5.0
  • Tokenizers: 0.21.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}