metadata
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: >-
Multiple non-calcified nodules in left lower lobe, ranging from 3-6mm.
Follow-up CT scan recommended.
- text: >-
Heart size and mediastinal contours normal. Lungs clear, no consolidation
or acute abnormality. No pleural effusion or pneumothorax. No acute
osseous abnormalities. Small 0.5 cm calcified granuloma in right upper
lobe, likely benign from prior infection. No acute cardiopulmonary
disease. Incidental right upper lobe granuloma. No follow-up needed unless
clinically indicated. nan
- text: >-
Patchy consolidation in RLL consistent with pneumonia. Recommend clinical
follow-up.
- text: >-
Calcified granuloma in the left lower lobe, incidental finding. Findings
consistent with COPD exacerbation.
- text: >-
Moderate pleural effusion and patchy consolidation in bilateral lung
bases.
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: false
SetFit
This is a SetFit model that can be used for Text Classification. A OneVsRestClassifier instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Classification head: a OneVsRestClassifier instance
- Maximum Sequence Length: 512 tokens
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("Moderate pleural effusion and patchy consolidation in bilateral lung bases.")
Training Details
Training Set Metrics
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 7 | 17.5143 | 53 |
Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0096 | 1 | 0.1417 | - |
| 0.4808 | 50 | 0.1824 | - |
| 0.9615 | 100 | 0.1083 | - |
| 1.4423 | 150 | 0.0817 | - |
| 1.9231 | 200 | 0.0777 | - |
| 2.4038 | 250 | 0.0636 | - |
| 2.8846 | 300 | 0.0649 | - |
| 3.3654 | 350 | 0.0603 | - |
| 3.8462 | 400 | 0.0713 | - |
| 4.3269 | 450 | 0.0507 | - |
| 4.8077 | 500 | 0.0569 | - |
| 5.2885 | 550 | 0.0553 | - |
| 5.7692 | 600 | 0.0614 | - |
| 6.25 | 650 | 0.0512 | - |
| 6.7308 | 700 | 0.0559 | - |
| 7.2115 | 750 | 0.0512 | - |
| 7.6923 | 800 | 0.0464 | - |
| 8.1731 | 850 | 0.0547 | - |
| 8.6538 | 900 | 0.0455 | - |
| 9.1346 | 950 | 0.0524 | - |
| 9.6154 | 1000 | 0.0526 | - |
Framework Versions
- Python: 3.11.11
- SetFit: 1.1.2
- Sentence Transformers: 4.0.2
- Transformers: 4.51.2
- PyTorch: 2.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}